Properties

Label 3.2.9.30b33.9
Base \(\Q_{3}\)
Degree \(18\)
e \(9\)
f \(2\)
c \(30\)
Galois group $\He_3:C_4$ (as 18T49)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{9} + 6 x ( x^{2} + 2 x + 2 )^{8} + \left(3 x + 6\right) ( x^{2} + 2 x + 2 )^{7} + \left(6 x + 6\right) ( x^{2} + 2 x + 2 )^{4} + 3 x ( x^{2} + 2 x + 2 )^{3} + 21$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $9$
Residue field degree $f$: $2$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{3}{2}, 2]$
Visible Swan slopes:$[\frac{1}{2},1]$
Means:$\langle\frac{1}{3}, \frac{7}{9}\rangle$
Rams:$(\frac{1}{2}, 2)$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.2.3.6a5.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{9} + \left(3 t + 6\right) x^{8} + 6 t x^{7} + \left(6 t + 3\right) x^{3} + 21 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + (t + 2)$,$(t + 2) z^2 + 2 t$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 3, 0]$

Invariants of the Galois closure

Galois degree: $108$
Galois group: $\He_3:C_4$ (as 18T49)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed