Properties

Label 3.2.6.18a6.4
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $C_2\times C_3^2:C_4$ (as 12T41)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{6} + \left(6 x + 3\right) ( x^{2} + 2 x + 2 )^{5} + 3 ( x^{2} + 2 x + 2 )^{4} + \left(6 x + 6\right) ( x^{2} + 2 x + 2 ) + 3 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{2}{3}\rangle$
Rams:$(2)$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.2.2.2a1.1, 3.2.3.8a5.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 3 x^{4} + 3 t \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z^2 + (2 t + 1)$
Associated inertia:$1$,$2$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois degree: $72$
Galois group: $C_2\times C_3^2:C_4$ (as 12T41)
Inertia group: Intransitive group isomorphic to $C_3\times C_6$
Wild inertia group: $C_3^2$
Galois unramified degree: $4$
Galois tame degree: $2$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.8333333333333333$
Galois splitting model:$x^{12} - 12 x^{9} + 26 x^{6} + 12 x^{3} + 1$