Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_3^2:C_4$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $41$ |
| |
| CHM label: | $1/2[(1/4.2^{3})^{2}]F_{36}(6)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,6,12,7)(2,8,11,5)(3,9,10,4)$, $(1,5,9)(4,8,12)$, $(1,12)(2,3)(4,5)(6,7)(8,9)(10,11)$, $(2,10)(3,11)(4,8)(5,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $36$: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$
Low degree siblings
12T40 x 2, 12T41, 18T27 x 2, 24T76 x 2, 36T35, 36T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| 2B | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 8)( 2, 3)( 4, 5)( 6,11)( 7,10)( 9,12)$ |
| 2C | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4,12)$ |
| 3A | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 5, 9)( 4, 8,12)$ |
| 3B | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| 4A1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1, 7, 8,10)( 2, 5, 3, 4)( 6, 9,11,12)$ |
| 4A-1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1,10, 8, 7)( 2, 4, 3, 5)( 6,12,11, 9)$ |
| 4B1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1, 3, 8,10)( 2, 9,11,12)( 4, 6, 5, 7)$ |
| 4B-1 | $4^{3}$ | $9$ | $4$ | $9$ | $( 1,10, 8, 3)( 2,12,11, 9)( 4, 7, 5, 6)$ |
| 6A | $6,2^{3}$ | $4$ | $6$ | $8$ | $( 1, 8, 5,12, 9, 4)( 2, 3)( 6, 7)(10,11)$ |
| 6B | $6^{2}$ | $4$ | $6$ | $10$ | $( 1, 4, 9,12, 5, 8)( 2,11, 6, 3,10, 7)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | ||
| Size | 1 | 1 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 2B | 2B | 3A | 3B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 2A | |
| Type | |||||||||||||
| 72.45.1a | R | ||||||||||||
| 72.45.1b | R | ||||||||||||
| 72.45.1c | R | ||||||||||||
| 72.45.1d | R | ||||||||||||
| 72.45.1e1 | C | ||||||||||||
| 72.45.1e2 | C | ||||||||||||
| 72.45.1f1 | C | ||||||||||||
| 72.45.1f2 | C | ||||||||||||
| 72.45.4a | R | ||||||||||||
| 72.45.4b | R | ||||||||||||
| 72.45.4c | R | ||||||||||||
| 72.45.4d | R |
Regular extensions
Data not computed