Properties

Label 3.2.6.14a5.2
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(14\)
Galois group $C_2\times C_3^2:C_4$ (as 12T40)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{6} + 6 x ( x^{2} + 2 x + 2 )^{2} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{3}{2}]$
Visible Swan slopes:$[\frac{1}{2}]$
Means:$\langle\frac{1}{3}\rangle$
Rams:$(1)$
Jump set:$[1, 5]$
Roots of unity:$24 = (3^{ 2 } - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.2.2.2a1.2, 3.2.3.6a3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 6 t x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z^2 + t$
Associated inertia:$1$,$2$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $72$
Galois group: $C_2\times C_3^2:C_4$ (as 12T40)
Inertia group: Intransitive group isomorphic to $C_3:S_3$
Wild inertia group: $C_3^2$
Galois unramified degree: $4$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}, \frac{3}{2}]$
Galois Swan slopes: $[\frac{1}{2},\frac{1}{2}]$
Galois mean slope: $1.3888888888888888$
Galois splitting model:$x^{12} - 6 x^{10} - 8 x^{9} + 27 x^{8} + 36 x^{7} - 46 x^{6} - 108 x^{5} + 57 x^{4} + 140 x^{3} + 180 x^{2} - 48 x + 16$