Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $40$ | |
| Group : | $C_2\times C_3:S_3.C_2$ | |
| CHM label : | $F_{36}(6)[x]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5,9)(4,8,12), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11), (2,10)(3,11)(4,8)(5,9), (1,7)(2,8,10,4)(3,9,11,5)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 36: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $C_3^2:C_4$
Low degree siblings
12T40, 12T41 x 2, 18T27 x 2, 24T76 x 2, 36T35, 36T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3,12)( 4, 7, 8,11)( 5, 6, 9,10)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3,12)( 4,11, 8, 7)( 5,10, 9, 6)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 3, 5, 7)( 2, 4, 6,12)( 8,10)( 9,11)$ |
| $ 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 3, 5,11)( 2, 4,10,12)( 6, 8)( 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 3)( 6, 7)(10,11)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 45] |
| Character table: |
2 3 3 1 3 3 3 3 3 1 1 1 3
3 2 . 2 . . . . . 2 2 2 2
1a 2a 3a 4a 4b 4c 4d 2b 6a 6b 3b 2c
2P 1a 1a 3a 2a 2a 2a 2a 1a 3a 3b 3b 1a
3P 1a 2a 1a 4b 4a 4d 4c 2b 2c 2c 1a 2c
5P 1a 2a 3a 4a 4b 4c 4d 2b 6a 6b 3b 2c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1
X.3 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1
X.5 1 -1 1 A -A A -A -1 1 1 1 1
X.6 1 -1 1 -A A -A A -1 1 1 1 1
X.7 1 -1 1 A -A -A A 1 -1 -1 1 -1
X.8 1 -1 1 -A A A -A 1 -1 -1 1 -1
X.9 4 . -2 . . . . . -2 1 1 4
X.10 4 . -2 . . . . . 2 -1 1 -4
X.11 4 . 1 . . . . . -1 2 -2 -4
X.12 4 . 1 . . . . . 1 -2 -2 4
A = -E(4)
= -Sqrt(-1) = -i
|