Properties

Label 3.2.10.18a1.2
Base \(\Q_{3}\)
Degree \(20\)
e \(10\)
f \(2\)
c \(18\)
Galois group $C_2\times F_5$ (as 20T13)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{10} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $20$
Ramification index $e$: $10$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_2^2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[5]$
Roots of unity:$24 = (3^{ 2 } - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.2.2.2a1.2, 3.1.5.4a1.1, 3.2.5.8a1.1, 3.1.10.9a1.2, 3.1.10.9a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{10} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + z^8 + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $40$
Galois group: $C_2\times F_5$ (as 20T13)
Inertia group: Intransitive group isomorphic to $C_{10}$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9$
Galois splitting model:not computed