Properties

Label 3.15.25.57
Base \(\Q_{3}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(25\)
Galois group $C_3^4:(C_2\times F_5)$ (as 15T52)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 3 x^{14} + 6 x^{13} + 3 x^{12} + 6 x^{11} + 3 x^{6} + 3 x^{3} + 18 x^{2} + 18 x + 12\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $25$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[21/10]$

Intermediate fields

3.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{15} + 3 x^{14} + 6 x^{13} + 3 x^{12} + 6 x^{11} + 3 x^{6} + 3 x^{3} + 18 x^{2} + 18 x + 12 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z + 2$,$z^{12} + 2z^{9} + z^{6} + z^{3} + 2$
Associated inertia:$1$,$4$
Indices of inseparability:$[11, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:(C_2\times F_5)$ (as 15T52)
Inertia group:$C_3^4:C_{10}$ (as 15T33)
Wild inertia group:$C_3^4$
Unramified degree:$4$
Tame degree:$10$
Wild slopes:$[21/10, 21/10, 21/10, 21/10]$
Galois mean slope:$563/270$
Galois splitting model: $x^{15} - 21 x^{13} - 22 x^{12} + 144 x^{11} + 312 x^{10} - 56 x^{9} - 864 x^{8} - 1890 x^{7} - 3464 x^{6} - 4482 x^{5} - 4476 x^{4} - 4846 x^{3} - 4608 x^{2} - 2550 x - 596$ Copy content Toggle raw display