Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $52$ | |
| CHM label : | $[3^{4}:2]F(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,11)(4,14,9), (1,11)(2,7)(4,14)(5,10)(8,13), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (1,7,4,13)(2,14,8,11)(3,6,12,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 20: $F_5$ 40: $F_{5}\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $F_5$
Low degree siblings
15T52, 30T447 x 2, 30T448 x 2, 30T449, 30T452 x 2, 30T453 x 2, 45T309, 45T313Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3,13, 8)( 4,14, 9)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3,13, 8)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3, 8,13)( 4,14, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1,11, 6)( 2, 7,12)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $81$ | $2$ | $( 6,11)( 7,12)( 8,13)( 9,14)(10,15)$ |
| $ 5, 5, 5 $ | $324$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $324$ | $10$ | $( 1, 4,12,10, 8, 6,14, 2, 5,13)( 3,11, 9, 7,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 2, 5)( 3, 9)( 4,13)( 7,10)( 8,14)(12,15)$ |
| $ 6, 3, 2, 2, 2 $ | $180$ | $6$ | $( 1, 6,11)( 2, 5)( 3, 4,13,14, 8, 9)( 7,10)(12,15)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 2, 5, 7,10,12,15)( 3, 9,13, 4, 8,14)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1, 6,11)( 2, 5, 7,10,12,15)( 3, 4, 8, 9,13,14)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $180$ | $6$ | $( 2, 5)( 3,14,13, 4, 8, 9)( 6,11)( 7,15)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $45$ | $2$ | $( 1, 6)( 2, 5)( 3, 9)( 4, 8)( 7,15)(10,12)(13,14)$ |
| $ 6, 6, 2, 1 $ | $180$ | $6$ | $( 2, 5, 7,15,12,10)( 3,14, 8, 9,13, 4)( 6,11)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 2, 8, 5,14)( 3,15, 9,12)( 4, 7,13,10)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 6,11)( 2, 8, 5, 9,12, 3,15, 4, 7,13,10,14)$ |
| $ 4, 4, 4, 2, 1 $ | $135$ | $4$ | $( 2,13,15,14)( 3,10, 4,12)( 5, 9, 7, 8)( 6,11)$ |
| $ 12, 2, 1 $ | $270$ | $12$ | $( 1, 6)( 2,13,15, 9, 7, 8, 5, 4,12, 3,10,14)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 2,14, 5, 8)( 3,12, 9,15)( 4,10,13, 7)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 6,11)( 2, 9,15, 3,12, 4,10,13, 7,14, 5, 8)$ |
| $ 4, 4, 4, 2, 1 $ | $135$ | $4$ | $( 2, 9,10, 8)( 3, 7, 4,15)( 5,13,12,14)( 6,11)$ |
| $ 12, 2, 1 $ | $270$ | $12$ | $( 1, 6)( 2, 4,15, 3, 7,14, 5,13,12, 9,10, 8)$ |
Group invariants
| Order: | $3240=2^{3} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |