Properties

Label 3.12.20.27
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(20\)
Galois group $C_3^4:\OD_{16}$ (as 12T215)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 9 x^{10} - 36 x^{7} - 105 x^{6} + 90 x^{5} + 432 x^{4} + 774 x^{3} + 1404 x^{2} + 864 x + 450\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[9/4]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 3 x^{5} + \left(3 t + 3\right) x^{3} + \left(18 t + 18\right) x^{2} + 18 t x + 21 t + 18 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z + t + 2$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:\OD_{16}$ (as 12T215)
Inertia group:Intransitive group isomorphic to $C_3^4:C_4$
Wild inertia group:$C_3^4$
Unramified degree:$4$
Tame degree:$4$
Wild slopes:$[9/4, 9/4, 9/4, 9/4]$
Galois mean slope:$241/108$
Galois splitting model: $x^{12} - 3 x^{10} - 16 x^{9} - 81 x^{8} + 36 x^{7} + 9 x^{6} - 162 x^{5} + 297 x^{4} + 332 x^{3} - 216 x^{2} - 168 x + 16$ Copy content Toggle raw display