Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $215$ | |
| CHM label : | $1/2[F_{36}^{2}]2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,7,6)(2,9,8,11,10,5,4,3), (4,8,12), (2,10)(4,8), (1,7)(2,8,10,4)(3,9,11,5)(6,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 16: $C_8:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T215, 18T288, 18T297 x 2, 24T2899 x 2, 24T2900 x 2, 24T2901 x 2, 24T2928 x 2, 24T2939 x 2, 36T2164, 36T2165, 36T2166, 36T2195 x 2, 36T2307 x 2, 36T2308 x 2, 36T2313, 36T2314, 36T2319Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2, 6,10)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $16$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $16$ | $3$ | $( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4,12, 8)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 2, 2 $ | $81$ | $4$ | $( 1, 7)( 2, 8,10, 4)( 3, 9,11, 5)( 6,12)$ |
| $ 4, 4, 2, 2 $ | $81$ | $4$ | $( 1,11, 9, 7)( 2,12,10, 4)( 3, 5)( 6, 8)$ |
| $ 8, 4 $ | $162$ | $8$ | $( 1,12, 7, 6)( 2, 9, 8,11,10, 5, 4, 3)$ |
| $ 8, 4 $ | $162$ | $8$ | $( 1, 6, 7,12)( 2,11, 4, 9,10, 3, 8, 5)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 6,10)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 3, 7,11)( 6,10)( 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $72$ | $6$ | $( 1, 5, 9)( 3, 7,11)( 6,10)( 8,12)$ |
| $ 4, 4, 2, 2 $ | $162$ | $4$ | $( 1, 7)( 2, 8, 6, 4)( 3, 9,11, 5)(10,12)$ |
| $ 8, 4 $ | $162$ | $8$ | $( 1,12,11,10)( 2, 9, 8, 7, 6, 5, 4, 3)$ |
| $ 8, 4 $ | $162$ | $8$ | $( 1, 6, 3, 8)( 2,11, 4, 9,10, 7,12, 5)$ |
Group invariants
| Order: | $1296=2^{4} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1296, 3508] |
| Character table: |
2 4 1 . 1 . . . 4 4 4 3 3 3 1 1 3 3 3
3 4 4 4 4 4 4 4 . . . . . 2 2 2 . . .
1a 3a 3b 3c 3d 3e 3f 2a 4a 4b 8a 8b 2b 6a 6b 4c 8c 8d
2P 1a 3a 3b 3c 3d 3e 3f 1a 2a 2a 4a 4b 1a 3a 3c 2a 4b 4a
3P 1a 1a 1a 1a 1a 1a 1a 2a 4b 4a 8b 8a 2b 2b 2b 4c 8d 8c
5P 1a 3a 3b 3c 3d 3e 3f 2a 4a 4b 8a 8b 2b 6a 6b 4c 8c 8d
7P 1a 3a 3b 3c 3d 3e 3f 2a 4b 4a 8b 8a 2b 6a 6b 4c 8d 8c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
X.3 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 1 1 1 1 1 1 1 1 -1 -1 B -B -1 -1 -1 1 -B B
X.6 1 1 1 1 1 1 1 1 -1 -1 -B B -1 -1 -1 1 B -B
X.7 1 1 1 1 1 1 1 1 -1 -1 B -B 1 1 1 -1 B -B
X.8 1 1 1 1 1 1 1 1 -1 -1 -B B 1 1 1 -1 -B B
X.9 2 2 2 2 2 2 2 -2 A -A . . . . . . . .
X.10 2 2 2 2 2 2 2 -2 -A A . . . . . . . .
X.11 8 5 2 2 -1 -1 -4 . . . . . -4 -1 2 . . .
X.12 8 5 2 2 -1 -1 -4 . . . . . 4 1 -2 . . .
X.13 8 2 -4 5 -1 -1 2 . . . . . -4 2 -1 . . .
X.14 8 2 -4 5 -1 -1 2 . . . . . 4 -2 1 . . .
X.15 16 -8 4 4 -2 -2 1 . . . . . . . . . . .
X.16 16 -2 -2 -2 -2 7 -2 . . . . . . . . . . .
X.17 16 -2 -2 -2 7 -2 -2 . . . . . . . . . . .
X.18 16 4 1 -8 -2 -2 4 . . . . . . . . . . .
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(4)
= -Sqrt(-1) = -i
|