Properties

Label 3.10.8.1
Base \(\Q_{3}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $F_5$ (as 10T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 598 x^{5} + 750 x^{4} + 640 x^{3} + 280 x^{2} + 40 x + 17\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $10$
Ramification exponent $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $2$
This field is not Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 2z^{3} + z^{2} + z + 2$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$F_5$ (as 10T4)
Inertia group:Intransitive group isomorphic to $C_5$
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:$x^{10} - 5 x^{9} + 5 x^{8} + 10 x^{7} - 15 x^{6} - 8 x^{5} + 40 x^{3} - 35 x^{2} + 10 x - 4$