Defining polynomial
\(x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 598 x^{5} + 750 x^{4} + 640 x^{3} + 280 x^{2} + 40 x + 17\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $10$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 3 }) }$: | $2$ |
This field is not Galois over $\Q_{3}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{3}(\sqrt{2})$, 3.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{2} + 2 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $F_5$ (as 10T4) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $4$ |
Tame degree: | $5$ |
Wild slopes: | None |
Galois mean slope: | $4/5$ |
Galois splitting model: | $x^{10} - 5 x^{9} + 5 x^{8} + 10 x^{7} - 15 x^{6} - 8 x^{5} + 40 x^{3} - 35 x^{2} + 10 x - 4$ |