Properties

Label 3.10.5.1
Base \(\Q_{3}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(5\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + 2 x + 1 )^{2} + \left(-4 x - 2\right) ( x^{5} + 2 x + 1 ) + 166 x^{2} + 4 x - 242$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $10$
Ramification exponent $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Gal(K/\Q_{ 3 }) }$: $10$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 3 t \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_{10}$ (as 10T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $5$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:$x^{10} - x^{9} - 200 x^{8} + 194 x^{7} + 11877 x^{6} - 3991 x^{5} - 248665 x^{4} - 32090 x^{3} + 1913681 x^{2} + 788162 x - 3646277$