Properties

Label 3.1.9.24a1.16
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(24\)
Galois group $(C_3^3:C_3):C_2$ (as 9T21)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 18 x^{8} + 9 x^{7} + 9 x^{3} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}, \frac{19}{6}]$
Visible Swan slopes:$[\frac{3}{2},\frac{13}{6}]$
Means:$\langle1, \frac{16}{9}\rangle$
Rams:$(\frac{3}{2}, \frac{7}{2})$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.3.5a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 18 x^{8} + 9 x^{7} + 9 x^{3} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[16, 9, 0]$

Invariants of the Galois closure

Galois degree: $162$
Galois group: $C_3^3:S_3$ (as 9T21)
Inertia group: $C_3^3:S_3$ (as 9T21)
Wild inertia group: $C_3\wr C_3$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}, \frac{5}{2}, \frac{8}{3}, \frac{19}{6}]$
Galois Swan slopes: $[\frac{1}{2},\frac{3}{2},\frac{5}{3},\frac{13}{6}]$
Galois mean slope: $2.932098765432099$
Galois splitting model:$x^{9} - 3 x^{6} + 81 x^{5} - 162 x^{4} + 48 x^{3} + 729 x^{2} - 1350 x + 1163$