Show commands: Magma
Group invariants
Abstract group: | $(C_3^3:C_3):C_2$ |
| |
Order: | $162=2 \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $9$ |
| |
Transitive number $t$: | $21$ |
| |
CHM label: | $1/2.[3^{3}:2]S(3)$ | ||
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,9)$, $(1,2)(3,6)(4,8)(5,7)$, $(1,4,7)(2,5,8)(3,6,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ x 4 $18$: $C_3^2:C_2$ $54$: $(C_3^2:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
9T21 x 2, 18T88 x 3, 27T51 x 3, 27T52, 27T67Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1$ | $27$ | $2$ | $4$ | $(1,5)(2,4)(3,9)(7,8)$ |
3A | $3^{3}$ | $2$ | $3$ | $6$ | $(1,9,2)(3,5,4)(6,8,7)$ |
3B1 | $3^{2},1^{3}$ | $3$ | $3$ | $4$ | $(1,9,2)(3,4,5)$ |
3B-1 | $3^{2},1^{3}$ | $3$ | $3$ | $4$ | $(1,2,9)(3,5,4)$ |
3C | $3^{2},1^{3}$ | $6$ | $3$ | $4$ | $(1,2,9)(6,7,8)$ |
3D | $3,1^{6}$ | $6$ | $3$ | $2$ | $(3,5,4)$ |
3E | $3^{3}$ | $6$ | $3$ | $6$ | $(1,9,2)(3,4,5)(6,8,7)$ |
3F | $3^{3}$ | $18$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
6A1 | $6,2,1$ | $27$ | $6$ | $6$ | $(1,4,9,5,2,3)(7,8)$ |
6A-1 | $6,2,1$ | $27$ | $6$ | $6$ | $(1,3,2,5,9,4)(7,8)$ |
9A | $9$ | $18$ | $9$ | $8$ | $(1,4,7,9,3,6,2,5,8)$ |
9B | $9$ | $18$ | $9$ | $8$ | $(1,5,6,2,3,7,9,4,8)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 3A | 3B1 | 3B-1 | 3C | 3D | 3E | 3F | 6A1 | 6A-1 | 9A | 9B | ||
Size | 1 | 27 | 2 | 3 | 3 | 6 | 6 | 6 | 18 | 27 | 27 | 18 | 18 | |
2 P | 1A | 1A | 3A | 3B-1 | 3B1 | 3C | 3D | 3E | 3F | 3B1 | 3B-1 | 9A | 9B | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 3A | 3A | |
Type | ||||||||||||||
162.19.1a | R | |||||||||||||
162.19.1b | R | |||||||||||||
162.19.2a | R | |||||||||||||
162.19.2b | R | |||||||||||||
162.19.2c | R | |||||||||||||
162.19.2d | R | |||||||||||||
162.19.3a1 | C | |||||||||||||
162.19.3a2 | C | |||||||||||||
162.19.3b1 | C | |||||||||||||
162.19.3b2 | C | |||||||||||||
162.19.6a | R | |||||||||||||
162.19.6b | R | |||||||||||||
162.19.6c | R |
Regular extensions
$f_{ 1 } =$ |
$x^{9} - 9 x^{8} + \left(t + 22\right) x^{7} - 6 t x^{6} + \left(t - 32\right) x^{5} + \left(22 t - 2\right) x^{4} + \left(22 t + 10\right) x^{3} + \left(8 t - 4\right) x^{2} + \left(t - 5\right) x - 1$
|