Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $21$ | |
| Group : | $(C_3^3:C_3):C_2$ | |
| CHM label : | $1/2.[3^{3}:2]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9), (1,2)(3,6)(4,8)(5,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 54: $(C_3^2:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
9T21 x 2, 18T88 x 3, 27T51 x 3, 27T52, 27T67Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $6$ | $3$ | $(3,4,5)(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(3,5,4)(6,7,8)$ |
| $ 2, 2, 2, 2, 1 $ | $27$ | $2$ | $(2,9)(3,6)(4,8)(5,7)$ |
| $ 6, 2, 1 $ | $27$ | $6$ | $(2,9)(3,6,4,8,5,7)$ |
| $ 6, 2, 1 $ | $27$ | $6$ | $(2,9)(3,6,5,7,4,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,2,9)(3,4,5)(6,8,7)$ |
| $ 3, 3, 3 $ | $18$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 9 $ | $18$ | $9$ | $(1,3,6,2,4,7,9,5,8)$ |
| $ 9 $ | $18$ | $9$ | $(1,3,6,9,5,8,2,4,7)$ |
Group invariants
| Order: | $162=2 \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [162, 19] |
| Character table: |
2 1 . . 1 1 1 1 1 . . . . .
3 4 3 3 3 3 1 1 1 4 3 2 2 2
1a 3a 3b 3c 3d 2a 6a 6b 3e 3f 3g 9a 9b
2P 1a 3a 3b 3d 3c 1a 3c 3d 3e 3f 3g 9a 9b
3P 1a 1a 1a 1a 1a 2a 2a 2a 1a 1a 1a 3e 3e
5P 1a 3a 3b 3d 3c 2a 6b 6a 3e 3f 3g 9a 9b
7P 1a 3a 3b 3c 3d 2a 6a 6b 3e 3f 3g 9a 9b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 1 1 1 1 1
X.3 2 2 2 2 2 . . . 2 2 -1 -1 -1
X.4 2 -1 -1 2 2 . . . 2 -1 2 -1 -1
X.5 2 -1 -1 2 2 . . . 2 -1 -1 -1 2
X.6 2 -1 -1 2 2 . . . 2 -1 -1 2 -1
X.7 3 . . A /A -1 B /B 3 . . . .
X.8 3 . . /A A -1 /B B 3 . . . .
X.9 3 . . A /A 1 -B -/B 3 . . . .
X.10 3 . . /A A 1 -/B -B 3 . . . .
X.11 6 . -3 . . . . . -3 3 . . .
X.12 6 3 . . . . . . -3 -3 . . .
X.13 6 -3 3 . . . . . -3 . . . .
A = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
B = -E(3)
= (1-Sqrt(-3))/2 = -b3
|