Properties

Label 3.1.9.22a4.2
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(22\)
Galois group $(C_3^3:C_3):C_2$ (as 9T22)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 9 x^{8} + 6 x^{6} + 9 x^{5} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2, 3]$
Visible Swan slopes:$[1,2]$
Means:$\langle\frac{2}{3}, \frac{14}{9}\rangle$
Rams:$(1, 4)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.3.4a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 9 x^{8} + 6 x^{6} + 9 x^{5} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 2$,$2 z^2 + 2$
Associated inertia:$1$,$2$
Indices of inseparability:$[14, 6, 0]$

Invariants of the Galois closure

Galois degree: $162$
Galois group: $C_3^3:C_6$ (as 9T22)
Inertia group: $C_3\wr C_3$ (as 9T17)
Wild inertia group: $C_3\wr C_3$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, \frac{7}{3}, 3]$
Galois Swan slopes: $[1,1,\frac{4}{3},2]$
Galois mean slope: $2.7160493827160495$
Galois splitting model:$x^{9} - 6 x^{6} - 27 x^{5} - 36 x^{4} - 27 x^{3} + 36 x + 8$