Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $(C_3^2:C_3):C_2$ | |
| CHM label : | $[3^{3}:2]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9), (1,2)(4,5)(7,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 54: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
9T22 x 2, 18T85 x 3, 27T53 x 3, 27T62, 27T63Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $6$ | $3$ | $(3,4,5)(6,7,8)$ |
| $ 3, 3, 1, 1, 1 $ | $6$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $27$ | $2$ | $(2,9)(4,5)(7,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,2,9)(3,4,5)(6,8,7)$ |
| $ 3, 3, 3 $ | $9$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 9 $ | $18$ | $9$ | $(1,3,6,2,4,7,9,5,8)$ |
| $ 6, 3 $ | $27$ | $6$ | $(1,3,6)(2,5,7,9,4,8)$ |
| $ 3, 3, 3 $ | $9$ | $3$ | $(1,6,3)(2,7,4)(5,9,8)$ |
| $ 9 $ | $18$ | $9$ | $(1,6,4,2,7,5,9,8,3)$ |
| $ 6, 3 $ | $27$ | $6$ | $(1,6,3)(2,8,4,9,7,5)$ |
Group invariants
| Order: | $162=2 \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [162, 11] |
| Character table: |
2 1 . . . 1 . . 1 . 1 1 . 1
3 4 3 3 3 1 4 3 2 2 1 2 2 1
1a 3a 3b 3c 2a 3d 3e 3f 9a 6a 3g 9b 6b
2P 1a 3a 3b 3c 1a 3d 3e 3g 9b 3g 3f 9a 3f
3P 1a 1a 1a 1a 2a 1a 1a 1a 3d 2a 1a 3d 2a
5P 1a 3a 3b 3c 2a 3d 3e 3g 9b 6b 3f 9a 6a
7P 1a 3a 3b 3c 2a 3d 3e 3f 9a 6a 3g 9b 6b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 1 1 1 1 -1 1 1 -1
X.3 1 1 1 1 -1 1 1 A A -A /A /A -/A
X.4 1 1 1 1 -1 1 1 /A /A -/A A A -A
X.5 1 1 1 1 1 1 1 A A A /A /A /A
X.6 1 1 1 1 1 1 1 /A /A /A A A A
X.7 2 -1 -1 2 . 2 -1 2 -1 . 2 -1 .
X.8 2 -1 -1 2 . 2 -1 B -A . /B -/A .
X.9 2 -1 -1 2 . 2 -1 /B -/A . B -A .
X.10 6 . -3 . . -3 3 . . . . . .
X.11 6 3 . . . -3 -3 . . . . . .
X.12 6 -3 3 . . -3 . . . . . . .
X.13 6 . . -3 . 6 . . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|