Defining polynomial
\(x^{9} + 3 x^{6} + 18 x^{5} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $9$ |
Ramification index $e$: | $9$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[2, 3]$ |
Visible Swan slopes: | $[1,2]$ |
Means: | $\langle\frac{2}{3}, \frac{14}{9}\rangle$ |
Rams: | $(1, 4)$ |
Jump set: | undefined |
Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
3.1.3.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{9} + 3 x^{6} + 18 x^{5} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^6 + 1$,$z^2 + 1$ |
Associated inertia: | $2$,$2$ |
Indices of inseparability: | $[14, 6, 0]$ |
Invariants of the Galois closure
Galois degree: | $18$ |
Galois group: | $D_9$ (as 9T3) |
Inertia group: | $C_9$ (as 9T1) |
Wild inertia group: | $C_9$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3]$ |
Galois Swan slopes: | $[1,2]$ |
Galois mean slope: | $2.4444444444444446$ |
Galois splitting model: | $x^{9} - 9 x^{7} + 27 x^{5} - 39 x^{3} + 36 x - 112$ |