Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $D_{9}$ | |
| CHM label : | $D(9)=9:2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9), (1,8)(2,7)(3,6)(4,5) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
18T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 9 $ | $2$ | $9$ | $(1,2,3,4,5,6,7,8,9)$ |
| $ 9 $ | $2$ | $9$ | $(1,3,5,7,9,2,4,6,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| $ 9 $ | $2$ | $9$ | $(1,5,9,4,8,3,7,2,6)$ |
Group invariants
| Order: | $18=2 \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [18, 1] |
| Character table: |
2 1 1 . . . .
3 2 . 2 2 2 2
1a 2a 9a 9b 3a 9c
2P 1a 1a 9b 9c 3a 9a
3P 1a 2a 3a 3a 1a 3a
5P 1a 2a 9c 9a 3a 9b
7P 1a 2a 9b 9c 3a 9a
X.1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1
X.3 2 . -1 -1 2 -1
X.4 2 . A B -1 C
X.5 2 . B C -1 A
X.6 2 . C A -1 B
A = E(9)^2+E(9)^7
B = E(9)^4+E(9)^5
C = -E(9)^2-E(9)^4-E(9)^5-E(9)^7
|