Show commands:
Magma
magma: G := TransitiveGroup(9, 3);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{9}$ | ||
CHM label: | $D(9)=9:2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4,5,6,7,8,9), (1,8)(2,7)(3,6)(4,5) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
18T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1$ | $9$ | $2$ | $4$ | $(2,9)(3,8)(4,7)(5,6)$ |
3A | $3^{3}$ | $2$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
9A1 | $9$ | $2$ | $9$ | $8$ | $(1,2,3,4,5,6,7,8,9)$ |
9A2 | $9$ | $2$ | $9$ | $8$ | $(1,8,6,4,2,9,7,5,3)$ |
9A4 | $9$ | $2$ | $9$ | $8$ | $(1,5,9,4,8,3,7,2,6)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $18=2 \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 18.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 9A1 | 9A2 | 9A4 | ||
Size | 1 | 9 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A | 9A2 | 9A4 | 9A1 | |
3 P | 1A | 2A | 1A | 3A | 3A | 3A | |
Type | |||||||
18.1.1a | R | ||||||
18.1.1b | R | ||||||
18.1.2a | R | ||||||
18.1.2b1 | R | ||||||
18.1.2b2 | R | ||||||
18.1.2b3 | R |
magma: CharacterTable(G);