Properties

Label 9T3
Degree $9$
Order $18$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{9}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(9, 3);
 

Group action invariants

Degree $n$:  $9$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $3$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $D_{9}$
CHM label:   $D(9)=9:2$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6,7,8,9), (1,8)(2,7)(3,6)(4,5)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$6$:  $S_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Low degree siblings

18T5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{9}$ $1$ $1$ $0$ $()$
2A $2^{4},1$ $9$ $2$ $4$ $(2,9)(3,8)(4,7)(5,6)$
3A $3^{3}$ $2$ $3$ $6$ $(1,4,7)(2,5,8)(3,6,9)$
9A1 $9$ $2$ $9$ $8$ $(1,2,3,4,5,6,7,8,9)$
9A2 $9$ $2$ $9$ $8$ $(1,8,6,4,2,9,7,5,3)$
9A4 $9$ $2$ $9$ $8$ $(1,5,9,4,8,3,7,2,6)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $18=2 \cdot 3^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  18.1
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 9A1 9A2 9A4
Size 1 9 2 2 2 2
2 P 1A 1A 3A 9A2 9A4 9A1
3 P 1A 2A 1A 3A 3A 3A
Type
18.1.1a R 1 1 1 1 1 1
18.1.1b R 1 1 1 1 1 1
18.1.2a R 2 0 2 1 1 1
18.1.2b1 R 2 0 1 ζ94+ζ94 ζ91+ζ9 ζ92+ζ92
18.1.2b2 R 2 0 1 ζ92+ζ92 ζ94+ζ94 ζ91+ζ9
18.1.2b3 R 2 0 1 ζ91+ζ9 ζ92+ζ92 ζ94+ζ94

magma: CharacterTable(G);