Defining polynomial
|
\(x^{9} + 6 x^{6} + 9 x^{4} + 18 x^{2} + 21\)
|
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$: | $9$ |
| Ramification index $e$: | $9$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $19$ |
| Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
| Root number: | $-i$ |
| $\Aut(K/\Q_{3})$: | $C_3$ |
| This field is not Galois over $\Q_{3}.$ | |
| Visible Artin slopes: | $[2, \frac{5}{2}]$ |
| Visible Swan slopes: | $[1,\frac{3}{2}]$ |
| Means: | $\langle\frac{2}{3}, \frac{11}{9}\rangle$ |
| Rams: | $(1, \frac{5}{2})$ |
| Jump set: | undefined |
| Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
| 3.1.3.4a2.3, 3.1.3.5a1.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{3}$ |
| Relative Eisenstein polynomial: |
\( x^{9} + 6 x^{6} + 9 x^{4} + 18 x^{2} + 21 \)
|
Ramification polygon
| Residual polynomials: | $z^6 + 2$,$2 z + 1$ |
| Associated inertia: | $1$,$1$ |
| Indices of inseparability: | $[11, 6, 0]$ |
Invariants of the Galois closure
| Galois degree: | $18$ |
| Galois group: | $C_3\times S_3$ (as 9T4) |
| Inertia group: | $C_3\times S_3$ (as 9T4) |
| Wild inertia group: | $C_3^2$ |
| Galois unramified degree: | $1$ |
| Galois tame degree: | $2$ |
| Galois Artin slopes: | $[2, \frac{5}{2}]$ |
| Galois Swan slopes: | $[1,\frac{3}{2}]$ |
| Galois mean slope: | $2.1666666666666665$ |
| Galois splitting model: | $x^{9} - 24 x^{6} - 249 x^{3} - 512$ |