Properties

Label 3.1.9.19c2.11
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(19\)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 6 x^{6} + 9 x^{4} + 18 x^{2} + 21\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $19$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2, \frac{5}{2}]$
Visible Swan slopes:$[1,\frac{3}{2}]$
Means:$\langle\frac{2}{3}, \frac{11}{9}\rangle$
Rams:$(1, \frac{5}{2})$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.3.4a2.3, 3.1.3.5a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 6 x^{6} + 9 x^{4} + 18 x^{2} + 21 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 2$,$2 z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[11, 6, 0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $C_3\times S_3$ (as 9T4)
Inertia group: $C_3\times S_3$ (as 9T4)
Wild inertia group: $C_3^2$
Galois unramified degree: $1$
Galois tame degree: $2$
Galois Artin slopes: $[2, \frac{5}{2}]$
Galois Swan slopes: $[1,\frac{3}{2}]$
Galois mean slope: $2.1666666666666665$
Galois splitting model:$x^{9} - 24 x^{6} - 249 x^{3} - 512$