Properties

Label 3.1.9.16a2.1
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(16\)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 6 x^{8} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2, 2]$
Visible Swan slopes:$[1,1]$
Means:$\langle\frac{2}{3}, \frac{8}{9}\rangle$
Rams:$(1, 1)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.3.4a2.1, 3.1.3.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 6 x^{8} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 2$
Associated inertia:$2$
Indices of inseparability:$[8, 8, 0]$

Invariants of the Galois closure

Galois degree: $18$
Galois group: $C_3\times S_3$ (as 9T4)
Inertia group: $C_3^2$ (as 9T2)
Wild inertia group: $C_3^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2]$
Galois Swan slopes: $[1,1]$
Galois mean slope: $1.7777777777777777$
Galois splitting model:$x^{9} - 3 x^{8} + 3 x^{7} - 6 x^{5} + 15 x^{4} - 21 x^{3} + 15 x^{2} - 6 x + 1$