Properties

Label 3.1.16.15a1.2
Base \(\Q_{3}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(15\)
Galois group $C_{16}:C_4$ (as 16T136)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.1.4.3a1.2, 3.1.8.7a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{16} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{15} + z^{14} + 2 z^{12} + 2 z^{11} + z^9 + z^8 + z^6 + z^5 + 2 z^3 + 2 z^2 + 1$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_{16}:C_4$ (as 16T136)
Inertia group: $C_{16}$ (as 16T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $16$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9375$
Galois splitting model:not computed