Properties

Label 3.1.15.29a1.20
Base \(\Q_{3}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(29\)
Galois group $C_3^4:(S_3\times F_5)$ (as 15T64)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 9 x^{7} + 18 x^{4} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $29$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}]$
Visible Swan slopes:$[\frac{3}{2}]$
Means:$\langle1\rangle$
Rams:$(\frac{15}{2})$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{15} + 9 x^{7} + 18 x^{4} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 2 z^9 + z^6 + z^3 + 2$,$2 z + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[15, 0]$

Invariants of the Galois closure

Galois degree: $9720$
Galois group: $C_3^4:(S_3\times F_5)$ (as 15T64)
Inertia group: $C_3^5:C_{10}$ (as 15T44)
Wild inertia group: $C_3^5$
Galois unramified degree: $4$
Galois tame degree: $10$
Galois Artin slopes: $[\frac{17}{10}, \frac{17}{10}, \frac{17}{10}, \frac{17}{10}, \frac{5}{2}]$
Galois Swan slopes: $[\frac{7}{10},\frac{7}{10},\frac{7}{10},\frac{7}{10},\frac{3}{2}]$
Galois mean slope: $2.2300411522633743$
Galois splitting model: $x^{15} - 315 x^{12} + 35280 x^{9} - 2253510 x^{6} + 30144555 x^{3} - 132355125$ Copy content Toggle raw display