Properties

Label 15T64
Order \(9720\)
n \(15\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $15$
Transitive number $t$ :  $64$
CHM label :  $[3^{5}:2]F(5)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11)(2,7)(4,14)(5,10)(8,13), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,7,4,13)(2,14,8,11)(3,6,12,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
6:  $S_3$
8:  $C_4\times C_2$
12:  $D_{6}$
20:  $F_5$
24:  $S_3 \times C_4$
40:  $F_{5}\times C_2$
120:  $F_5 \times S_3$
3240:  15T52

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 5: $F_5$

Low degree siblings

15T64, 30T716 x 2, 30T725 x 2, 30T726 x 2, 30T729, 30T735 x 2, 45T496, 45T497, 45T508 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $10$ $3$ $( 5,15,10)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $20$ $3$ $( 3,13, 8)( 5,15,10)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $20$ $3$ $( 3,13, 8)( 5,10,15)$
$ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $20$ $3$ $( 1,11, 6)( 3,13, 8)( 5,15,10)$
$ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $40$ $3$ $( 1,11, 6)( 3,13, 8)( 5,10,15)$
$ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $20$ $3$ $( 1,11, 6)( 3, 8,13)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $10$ $3$ $( 1,11, 6)( 3,13, 8)( 4,14, 9)( 5,15,10)$
$ 3, 3, 3, 3, 1, 1, 1 $ $40$ $3$ $( 1,11, 6)( 3,13, 8)( 4,14, 9)( 5,10,15)$
$ 3, 3, 3, 3, 1, 1, 1 $ $20$ $3$ $( 1,11, 6)( 3, 8,13)( 4,14, 9)( 5,10,15)$
$ 3, 3, 3, 3, 1, 1, 1 $ $10$ $3$ $( 1, 6,11)( 3, 8,13)( 4,14, 9)( 5,15,10)$
$ 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$
$ 3, 3, 3, 3, 3 $ $10$ $3$ $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,10,15)$
$ 3, 3, 3, 3, 3 $ $20$ $3$ $( 1,11, 6)( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,10,15)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ $243$ $2$ $( 6,11)( 7,12)( 8,13)( 9,14)(10,15)$
$ 5, 5, 5 $ $324$ $5$ $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$
$ 15 $ $648$ $15$ $( 1, 4, 7, 5, 8,11,14, 2,15, 3, 6, 9,12,10,13)$
$ 10, 5 $ $972$ $10$ $( 1, 4,12,10, 8, 6,14, 2, 5,13)( 3,11, 9, 7,15)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ $45$ $2$ $( 1, 4)( 2, 8)( 3,12)( 6, 9)( 7,13)(11,14)$
$ 3, 2, 2, 2, 2, 2, 2 $ $90$ $6$ $( 1, 4)( 2, 8)( 3,12)( 5,15,10)( 6, 9)( 7,13)(11,14)$
$ 6, 2, 2, 2, 1, 1, 1 $ $180$ $6$ $( 1, 4)( 2, 3,12,13, 7, 8)( 6, 9)(11,14)$
$ 6, 3, 2, 2, 2 $ $180$ $6$ $( 1, 4)( 2, 3,12,13, 7, 8)( 5,15,10)( 6, 9)(11,14)$
$ 6, 3, 2, 2, 2 $ $180$ $6$ $( 1, 4)( 2, 3,12,13, 7, 8)( 5,10,15)( 6, 9)(11,14)$
$ 6, 6, 1, 1, 1 $ $90$ $6$ $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)$
$ 6, 6, 3 $ $90$ $6$ $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)( 5,15,10)$
$ 6, 6, 3 $ $90$ $6$ $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)( 5,10,15)$
$ 6, 6, 1, 1, 1 $ $90$ $6$ $( 1, 4,11,14, 6, 9)( 2,13, 7, 3,12, 8)$
$ 6, 6, 3 $ $180$ $6$ $( 1, 4,11,14, 6, 9)( 2,13, 7, 3,12, 8)( 5,15,10)$
$ 6, 2, 2, 2, 2, 1 $ $540$ $6$ $( 1, 4)( 2,13,12, 3, 7, 8)( 6,14)( 9,11)(10,15)$
$ 2, 2, 2, 2, 2, 2, 2, 1 $ $135$ $2$ $( 1, 4)( 2, 8)( 3, 7)( 6,14)( 9,11)(10,15)(12,13)$
$ 6, 6, 2, 1 $ $540$ $6$ $( 1, 4,11, 9, 6,14)( 2,13,12, 3, 7, 8)(10,15)$
$ 4, 4, 4, 1, 1, 1 $ $135$ $4$ $( 1, 7, 4,13)( 2,14, 8,11)( 3, 6,12, 9)$
$ 4, 4, 4, 3 $ $270$ $12$ $( 1, 7, 4,13)( 2,14, 8,11)( 3, 6,12, 9)( 5,15,10)$
$ 12, 1, 1, 1 $ $270$ $12$ $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)$
$ 12, 3 $ $270$ $12$ $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)( 5,15,10)$
$ 12, 3 $ $270$ $12$ $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)( 5,10,15)$
$ 4, 4, 4, 2, 1 $ $405$ $4$ $( 1,12,14,13)( 2, 9, 3,11)( 4, 8, 6, 7)(10,15)$
$ 12, 2, 1 $ $810$ $12$ $( 1,12,14, 8, 6, 7, 4, 3,11, 2, 9,13)(10,15)$
$ 4, 4, 4, 1, 1, 1 $ $135$ $4$ $( 1,13, 4, 7)( 2,11, 8,14)( 3, 9,12, 6)$
$ 4, 4, 4, 3 $ $270$ $12$ $( 1,13, 4, 7)( 2,11, 8,14)( 3, 9,12, 6)( 5,15,10)$
$ 12, 1, 1, 1 $ $270$ $12$ $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)$
$ 12, 3 $ $270$ $12$ $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)( 5,15,10)$
$ 12, 3 $ $270$ $12$ $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)( 5,10,15)$
$ 4, 4, 4, 2, 1 $ $405$ $4$ $( 1, 8, 9, 7)( 2, 6, 3,14)( 4,12,11,13)(10,15)$
$ 12, 2, 1 $ $810$ $12$ $( 1, 3,14, 2, 6,13, 4,12,11, 8, 9, 7)(10,15)$

Group invariants

Order:  $9720=2^{3} \cdot 3^{5} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.