Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $64$ | |
| CHM label : | $[3^{5}:2]F(5)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15), (5,10,15), (1,7,4,13)(2,14,8,11)(3,6,12,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 20: $F_5$ 24: $S_3 \times C_4$ 40: $F_{5}\times C_2$ 120: $F_5 \times S_3$ 3240: 15T52 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $F_5$
Low degree siblings
15T64, 30T716 x 2, 30T725 x 2, 30T726 x 2, 30T729, 30T735 x 2, 45T496, 45T497, 45T508 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $3$ | $( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3,13, 8)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3,13, 8)( 5,15,10)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $( 1,11, 6)( 3,13, 8)( 5,10,15)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3, 8,13)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1,11, 6)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $40$ | $3$ | $( 1,11, 6)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $20$ | $3$ | $( 1,11, 6)( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1 $ | $10$ | $3$ | $( 1, 6,11)( 3, 8,13)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 3, 3, 3, 3, 3 $ | $10$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,10,15)$ |
| $ 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3, 8,13)( 4,14, 9)( 5,10,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $243$ | $2$ | $( 6,11)( 7,12)( 8,13)( 9,14)(10,15)$ |
| $ 5, 5, 5 $ | $324$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $648$ | $15$ | $( 1, 4, 7, 5, 8,11,14, 2,15, 3, 6, 9,12,10,13)$ |
| $ 10, 5 $ | $972$ | $10$ | $( 1, 4,12,10, 8, 6,14, 2, 5,13)( 3,11, 9, 7,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $45$ | $2$ | $( 1, 4)( 2, 8)( 3,12)( 6, 9)( 7,13)(11,14)$ |
| $ 3, 2, 2, 2, 2, 2, 2 $ | $90$ | $6$ | $( 1, 4)( 2, 8)( 3,12)( 5,15,10)( 6, 9)( 7,13)(11,14)$ |
| $ 6, 2, 2, 2, 1, 1, 1 $ | $180$ | $6$ | $( 1, 4)( 2, 3,12,13, 7, 8)( 6, 9)(11,14)$ |
| $ 6, 3, 2, 2, 2 $ | $180$ | $6$ | $( 1, 4)( 2, 3,12,13, 7, 8)( 5,15,10)( 6, 9)(11,14)$ |
| $ 6, 3, 2, 2, 2 $ | $180$ | $6$ | $( 1, 4)( 2, 3,12,13, 7, 8)( 5,10,15)( 6, 9)(11,14)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)( 5,15,10)$ |
| $ 6, 6, 3 $ | $90$ | $6$ | $( 1, 4,11,14, 6, 9)( 2, 3,12,13, 7, 8)( 5,10,15)$ |
| $ 6, 6, 1, 1, 1 $ | $90$ | $6$ | $( 1, 4,11,14, 6, 9)( 2,13, 7, 3,12, 8)$ |
| $ 6, 6, 3 $ | $180$ | $6$ | $( 1, 4,11,14, 6, 9)( 2,13, 7, 3,12, 8)( 5,15,10)$ |
| $ 6, 2, 2, 2, 2, 1 $ | $540$ | $6$ | $( 1, 4)( 2,13,12, 3, 7, 8)( 6,14)( 9,11)(10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1 $ | $135$ | $2$ | $( 1, 4)( 2, 8)( 3, 7)( 6,14)( 9,11)(10,15)(12,13)$ |
| $ 6, 6, 2, 1 $ | $540$ | $6$ | $( 1, 4,11, 9, 6,14)( 2,13,12, 3, 7, 8)(10,15)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 1, 7, 4,13)( 2,14, 8,11)( 3, 6,12, 9)$ |
| $ 4, 4, 4, 3 $ | $270$ | $12$ | $( 1, 7, 4,13)( 2,14, 8,11)( 3, 6,12, 9)( 5,15,10)$ |
| $ 12, 1, 1, 1 $ | $270$ | $12$ | $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)( 5,15,10)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 7, 4, 8,11, 2,14, 3, 6,12, 9,13)( 5,10,15)$ |
| $ 4, 4, 4, 2, 1 $ | $405$ | $4$ | $( 1,12,14,13)( 2, 9, 3,11)( 4, 8, 6, 7)(10,15)$ |
| $ 12, 2, 1 $ | $810$ | $12$ | $( 1,12,14, 8, 6, 7, 4, 3,11, 2, 9,13)(10,15)$ |
| $ 4, 4, 4, 1, 1, 1 $ | $135$ | $4$ | $( 1,13, 4, 7)( 2,11, 8,14)( 3, 9,12, 6)$ |
| $ 4, 4, 4, 3 $ | $270$ | $12$ | $( 1,13, 4, 7)( 2,11, 8,14)( 3, 9,12, 6)( 5,15,10)$ |
| $ 12, 1, 1, 1 $ | $270$ | $12$ | $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)( 5,15,10)$ |
| $ 12, 3 $ | $270$ | $12$ | $( 1, 8,14, 2,11, 3, 9,12, 6,13, 4, 7)( 5,10,15)$ |
| $ 4, 4, 4, 2, 1 $ | $405$ | $4$ | $( 1, 8, 9, 7)( 2, 6, 3,14)( 4,12,11,13)(10,15)$ |
| $ 12, 2, 1 $ | $810$ | $12$ | $( 1, 3,14, 2, 6,13, 4,12,11, 8, 9, 7)(10,15)$ |
Group invariants
| Order: | $9720=2^{3} \cdot 3^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |