Properties

Label 3.1.12.22a1.26
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(22\)
Galois group $C_3^4:\SD_{16}$ (as 12T212)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{19}{8}]$
Visible Swan slopes:$[\frac{11}{8}]$
Means:$\langle\frac{11}{12}\rangle$
Rams:$(\frac{11}{2})$
Jump set:$[2, 14]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.4.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{12} + 6 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + z^6 + 1$,$z + 2$
Associated inertia:$2$,$1$
Indices of inseparability:$[11, 0]$

Invariants of the Galois closure

Galois degree: $1296$
Galois group: $C_3^4:\SD_{16}$ (as 12T212)
Inertia group: $C_3^2:F_9$ (as 12T173)
Wild inertia group: $C_3^4$
Galois unramified degree: $2$
Galois tame degree: $8$
Galois Artin slopes: $[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]$
Galois Swan slopes: $[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]$
Galois mean slope: $2.307098765432099$
Galois splitting model: $x^{12} - 12 x^{10} - 16 x^{9} - 54 x^{8} + 564 x^{6} + 1296 x^{5} + 2457 x^{4} + 4256 x^{3} + 3240 x^{2} + 1920 x + 400$ Copy content Toggle raw display