Defining polynomial
\(x^{12} + 6 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{19}{8}]$ |
Visible Swan slopes: | $[\frac{11}{8}]$ |
Means: | $\langle\frac{11}{12}\rangle$ |
Rams: | $(\frac{11}{2})$ |
Jump set: | $[2, 14]$ |
Roots of unity: | $6 = (3 - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.4.3a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{12} + 6 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3 \)
|
Ramification polygon
Residual polynomials: | $z^9 + z^6 + 1$,$z + 2$ |
Associated inertia: | $2$,$1$ |
Indices of inseparability: | $[11, 0]$ |
Invariants of the Galois closure
Galois degree: | $1296$ |
Galois group: | $C_3^4:\SD_{16}$ (as 12T212) |
Inertia group: | $C_3^2:F_9$ (as 12T173) |
Wild inertia group: | $C_3^4$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $8$ |
Galois Artin slopes: | $[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]$ |
Galois Swan slopes: | $[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]$ |
Galois mean slope: | $2.307098765432099$ |
Galois splitting model: |
$x^{12} - 12 x^{10} - 16 x^{9} - 54 x^{8} + 564 x^{6} + 1296 x^{5} + 2457 x^{4} + 4256 x^{3} + 3240 x^{2} + 1920 x + 400$
|