Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.22a1.1 |
12 |
$x^{12} + 3 x^{11} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.2 |
12 |
$x^{12} + 3 x^{11} + 9 x^{4} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.3 |
12 |
$x^{12} + 3 x^{11} + 18 x^{4} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.4 |
12 |
$x^{12} + 3 x^{11} + 9 x^{2} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.5 |
12 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x^{2} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.6 |
12 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x^{2} + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.7 |
6 |
$x^{12} + 3 x^{11} + 18 x^{2} + 3$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.8 |
6 |
$x^{12} + 3 x^{11} + 9 x^{4} + 18 x^{2} + 3$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.9 |
6 |
$x^{12} + 3 x^{11} + 18 x^{4} + 18 x^{2} + 3$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.10 |
36 |
$x^{12} + 3 x^{11} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.11 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.12 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.13 |
36 |
$x^{12} + 3 x^{11} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.14 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.15 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.16 |
36 |
$x^{12} + 3 x^{11} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.17 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.18 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
$[2, 14]$ |
3.1.12.22a1.19 |
36 |
$x^{12} + 6 x^{11} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.20 |
36 |
$x^{12} + 6 x^{11} + 9 x^{4} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.21 |
36 |
$x^{12} + 6 x^{11} + 18 x^{4} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.22 |
36 |
$x^{12} + 6 x^{11} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.23 |
36 |
$x^{12} + 6 x^{11} + 9 x^{4} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.24 |
36 |
$x^{12} + 6 x^{11} + 18 x^{4} + 9 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.25 |
36 |
$x^{12} + 6 x^{11} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.26 |
36 |
$x^{12} + 6 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.27 |
36 |
$x^{12} + 6 x^{11} + 18 x^{4} + 18 x^{2} + 9 x + 3$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
$[2, 14]$ |
3.1.12.22a1.28 |
12 |
$x^{12} + 3 x^{11} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.29 |
12 |
$x^{12} + 3 x^{11} + 9 x^{4} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.30 |
12 |
$x^{12} + 3 x^{11} + 18 x^{4} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.31 |
6 |
$x^{12} + 3 x^{11} + 9 x^{2} + 6$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.32 |
6 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x^{2} + 6$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.33 |
6 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x^{2} + 6$ |
$F_9:C_2$ (as 12T84) |
$144$ |
$1$ |
$[\frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{19}{8}]^{2}_{2}$ |
$[\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.34 |
12 |
$x^{12} + 3 x^{11} + 18 x^{2} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.35 |
12 |
$x^{12} + 3 x^{11} + 9 x^{4} + 18 x^{2} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.36 |
12 |
$x^{12} + 3 x^{11} + 18 x^{4} + 18 x^{2} + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{13}{8}, \frac{13}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{13}{8},\frac{13}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{5}{8},\frac{5}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.37 |
36 |
$x^{12} + 3 x^{11} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.38 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.39 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.40 |
36 |
$x^{12} + 3 x^{11} + 9 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.41 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 9 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.42 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 9 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.43 |
36 |
$x^{12} + 3 x^{11} + 18 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.44 |
36 |
$x^{12} + 3 x^{11} + 9 x^{4} + 18 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.45 |
36 |
$x^{12} + 3 x^{11} + 18 x^{4} + 18 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 2$ |
undefined |
3.1.12.22a1.46 |
36 |
$x^{12} + 6 x^{11} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
undefined |
3.1.12.22a1.47 |
36 |
$x^{12} + 6 x^{11} + 9 x^{4} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
undefined |
3.1.12.22a1.48 |
36 |
$x^{12} + 6 x^{11} + 18 x^{4} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
undefined |
3.1.12.22a1.49 |
36 |
$x^{12} + 6 x^{11} + 9 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
undefined |
3.1.12.22a1.50 |
36 |
$x^{12} + 6 x^{11} + 9 x^{4} + 9 x^{2} + 9 x + 6$ |
$C_3^4:\SD_{16}$ (as 12T212) |
$1296$ |
$1$ |
$[\frac{15}{8}, \frac{15}{8}, \frac{19}{8}, \frac{19}{8}]_{8}^{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8},\frac{11}{8}]_{8}^{2}$ |
$[\frac{15}{8},\frac{15}{8},\frac{19}{8}]^{2}_{2}$ |
$[\frac{7}{8},\frac{7}{8},\frac{11}{8}]^{2}_{2}$ |
$[11, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z + 1$ |
undefined |