Defining polynomial
\(x^{12} + 6 x^{10} + 9 x^{3} + 9 x^{2} + 9 x + 6\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $21$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{3})$: | $C_3$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{9}{4}]$ |
Visible Swan slopes: | $[\frac{5}{4}]$ |
Means: | $\langle\frac{5}{6}\rangle$ |
Rams: | $(5)$ |
Jump set: | undefined |
Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{3})$, 3.1.4.3a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{12} + 6 x^{10} + 9 x^{3} + 9 x^{2} + 9 x + 6 \)
|
Ramification polygon
Residual polynomials: | $z^9 + z^6 + 1$,$z^2 + 2$ |
Associated inertia: | $2$,$1$ |
Indices of inseparability: | $[10, 0]$ |
Invariants of the Galois closure
Galois degree: | $648$ |
Galois group: | $C_3\wr D_4$ (as 12T167) |
Inertia group: | $C_3^3:C_4$ (as 12T72) |
Wild inertia group: | $C_3^3$ |
Galois unramified degree: | $6$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{3}{2}, \frac{9}{4}, \frac{9}{4}]$ |
Galois Swan slopes: | $[\frac{1}{2},\frac{5}{4},\frac{5}{4}]$ |
Galois mean slope: | $2.138888888888889$ |
Galois splitting model: |
$x^{12} - 42 x^{10} - 14 x^{9} - 378 x^{8} - 1008 x^{7} + 4914 x^{6} + 10584 x^{5} + 111132 x^{4} + 146020 x^{3} + 111132 x^{2} + 41160 x + 1372$
|