Properties

Label 12T167
Order \(648\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $167$
CHM label :  $[3^{4}]D(4)=3wrD(4)$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7)(3,9)(5,11), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
8:  $D_{4}$
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $(C_6\times C_2):C_2$, $D_4 \times C_3$
36:  $C_6\times S_3$
72:  $C_3^2:D_4$, 12T42
216:  12T116, 12T121

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: None

Low degree siblings

12T167, 18T189 x 2, 24T1519 x 2, 24T1536, 36T1079 x 2, 36T1080 x 2, 36T1081 x 2, 36T1158, 36T1163, 36T1165, 36T1170, 36T1180, 36T1191 x 2, 36T1200 x 2, 36T1231 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $648=2^{3} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [648, 719]
Character table: Data not available.