Properties

Label 3.1.12.21a2.31
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(21\)
Galois group $C_3\wr D_4$ (as 12T167)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 3 x^{10} + 9 x^{3} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{9}{4}]$
Visible Swan slopes:$[\frac{5}{4}]$
Means:$\langle\frac{5}{6}\rangle$
Rams:$(5)$
Jump set:$[2, 14]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.4.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{12} + 6 x^{11} + 3 x^{10} + 9 x^{3} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + z^6 + 1$,$z^2 + 2$
Associated inertia:$2$,$1$
Indices of inseparability:$[10, 0]$

Invariants of the Galois closure

Galois degree: $648$
Galois group: $C_3\wr D_4$ (as 12T167)
Inertia group: $C_3\wr C_4$ (as 12T131)
Wild inertia group: $C_3^4$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{3}{2}, 2, \frac{9}{4}, \frac{9}{4}]$
Galois Swan slopes: $[\frac{1}{2},1,\frac{5}{4},\frac{5}{4}]$
Galois mean slope: $2.1944444444444446$
Galois splitting model: $x^{12} - 4 x^{9} + 123 x^{6} - 112 x^{3} + 49$ Copy content Toggle raw display