Defining polynomial
\(x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $19$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(4)$ |
Jump set: | $[2, 14]$ |
Roots of unity: | $6 = (3 - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.4.3a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^9 + z^6 + 1$,$z^2 + 1$ |
Associated inertia: | $2$,$2$ |
Indices of inseparability: | $[8, 0]$ |
Invariants of the Galois closure
Galois degree: | $648$ |
Galois group: | $C_3^3:D_{12}$ (as 12T169) |
Inertia group: | $C_3\wr C_4$ (as 12T131) |
Wild inertia group: | $C_3^4$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $4$ |
Galois Artin slopes: | $[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]$ |
Galois Swan slopes: | $[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]$ |
Galois mean slope: | $1.7993827160493827$ |
Galois splitting model: | $x^{12} - 63 x^{10} - 56 x^{9} + 1065 x^{8} + 1068 x^{7} - 6501 x^{6} - 7140 x^{5} + 13566 x^{4} + 16768 x^{3} - 4380 x^{2} - 5448 x + 1552$ |