Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.19a1.1 |
2 |
$x^{12} + 3 x^{8} + 3$ |
$D_{12}$ (as 12T12) |
$24$ |
$2$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.2 |
2 |
$x^{12} + 3 x^{11} + 3 x^{8} + 3$ |
$C_3^2:D_{12}$ (as 12T118) |
$216$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.3 |
4 |
$x^{12} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.4 |
4 |
$x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.5 |
4 |
$x^{12} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.6 |
4 |
$x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.7 |
2 |
$x^{12} + 6 x^{8} + 6$ |
$D_{12}$ (as 12T12) |
$24$ |
$2$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a1.8 |
2 |
$x^{12} + 3 x^{11} + 6 x^{8} + 6$ |
$C_3^2:D_{12}$ (as 12T118) |
$216$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a1.9 |
4 |
$x^{12} + 3 x^{10} + 6 x^{8} + 6$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a1.10 |
4 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 6$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a1.11 |
4 |
$x^{12} + 6 x^{10} + 6 x^{8} + 6$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a1.12 |
4 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 6$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
undefined |
3.1.12.19a2.1 |
6 |
$x^{12} + 6 x^{8} + 3$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 6]$ |
3.1.12.19a2.2 |
6 |
$x^{12} + 6 x^{8} + 12$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 18]$ |
3.1.12.19a2.3 |
6 |
$x^{12} + 6 x^{8} + 21$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 18]$ |
3.1.12.19a2.4 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 3$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
3.1.12.19a2.5 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 12$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
3.1.12.19a2.6 |
6 |
$x^{12} + 3 x^{11} + 6 x^{8} + 21$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 17]$ |
3.1.12.19a2.7 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.8 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 12$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.9 |
12 |
$x^{12} + 3 x^{10} + 6 x^{8} + 21$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.10 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 3$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.11 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 12$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.12 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 6 x^{8} + 21$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.13 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.14 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 12$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.15 |
12 |
$x^{12} + 6 x^{10} + 6 x^{8} + 21$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.16 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 3$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.17 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 12$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.18 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 6 x^{8} + 21$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 16]$ |
3.1.12.19a2.19 |
6 |
$x^{12} + 3 x^{8} + 6$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.20 |
6 |
$x^{12} + 3 x^{8} + 15$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.21 |
6 |
$x^{12} + 3 x^{8} + 24$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.22 |
6 |
$x^{12} + 3 x^{11} + 3 x^{8} + 6$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.23 |
6 |
$x^{12} + 3 x^{11} + 3 x^{8} + 15$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.24 |
6 |
$x^{12} + 3 x^{11} + 3 x^{8} + 24$ |
$S_3^2:C_6$ (as 12T121) |
$216$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.25 |
12 |
$x^{12} + 3 x^{10} + 3 x^{8} + 6$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.26 |
12 |
$x^{12} + 3 x^{10} + 3 x^{8} + 15$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.27 |
12 |
$x^{12} + 3 x^{10} + 3 x^{8} + 24$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.28 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 6$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.29 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 15$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.30 |
12 |
$x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 24$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.31 |
12 |
$x^{12} + 6 x^{10} + 3 x^{8} + 6$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.32 |
12 |
$x^{12} + 6 x^{10} + 3 x^{8} + 15$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.33 |
12 |
$x^{12} + 6 x^{10} + 3 x^{8} + 24$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.34 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 6$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.35 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 15$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.36 |
12 |
$x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 24$ |
$C_3\wr D_4$ (as 12T167) |
$648$ |
$3$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |