Properties

Label 3.1.10.9a1.1
Base \(\Q_{3}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(9\)
Galois group $F_{5}\times C_2$ (as 10T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[5]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{10} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + z^8 + 1$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $40$
Galois group: $C_2\times F_5$ (as 10T5)
Inertia group: $C_{10}$ (as 10T1)
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $10$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9$
Galois splitting model:$x^{10} - 3 x^{5} + 3$