$( x^{9} + x^{4} + 1 )^{2} + 2 x^{5} ( x^{9} + x^{4} + 1 ) + 4 x + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | 2.9.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{9} + x^{4} + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + \left(2 t^{5} + 2 t^{4} + 2 t^{2} + 2 t\right) x + 4 t + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$1152$
|
Galois group: |
$C_2^6:C_{18}$ (as 18T264)
|
Inertia group: |
Intransitive group isomorphic to $C_2^6$
|
Wild inertia group: |
$C_2^6$
|
Galois unramified degree: |
$18$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 2, 2, 2]$
|
Galois Swan slopes: |
$[1,1,1,1,1,1]$
|
Galois mean slope: |
$1.96875$
|
Galois splitting model: |
$x^{18} + 15 x^{16} - 90 x^{14} - 1053 x^{12} + 2754 x^{10} + 18954 x^{8} - 32805 x^{6} - 59049 x^{4} + 6561 x^{2} + 19683$
|