Properties

Label 2.9.2.18a7.2
Base \(\Q_{2}\)
Degree \(18\)
e \(2\)
f \(9\)
c \(18\)
Galois group $C_2^6:C_{18}$ (as 18T264)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{9} + x^{4} + 1 )^{2} + 2 x^{5} ( x^{9} + x^{4} + 1 ) + 4 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $18$
Ramification index $e$: $2$
Residue field degree $f$: $9$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 3]$
Roots of unity:$1022 = (2^{ 9 } - 1) \cdot 2$

Intermediate fields

2.3.1.0a1.1, 2.9.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.9.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{9} + x^{4} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(2 t^{5} + 2 t^{4} + 2 t^{2} + 2 t\right) x + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^8 + t^4)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $1152$
Galois group: $C_2^6:C_{18}$ (as 18T264)
Inertia group: Intransitive group isomorphic to $C_2^6$
Wild inertia group: $C_2^6$
Galois unramified degree: $18$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 2, 2]$
Galois Swan slopes: $[1,1,1,1,1,1]$
Galois mean slope: $1.96875$
Galois splitting model: $x^{18} + 15 x^{16} - 90 x^{14} - 1053 x^{12} + 2754 x^{10} + 18954 x^{8} - 32805 x^{6} - 59049 x^{4} + 6561 x^{2} + 19683$ Copy content Toggle raw display