Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $264$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,8,5,13,12,3,17,10,2,16,7,6,14,11,4,18,9), (1,6,4)(2,5,3)(7,11,10)(8,12,9)(13,18,15)(14,17,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 9: $C_9$ 18: $C_{18}$ 576: 12T166 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Degree 9: $C_9$
Low degree siblings
18T264 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,12)( 8,10,11)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 6, 3)( 2, 5, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1, 8,13, 3,10,16, 6,11,18)( 2, 7,14, 4, 9,15, 5,12,17)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,10,18, 3,11,13, 6, 8,16)( 2, 9,17, 4,12,14, 5, 7,15)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,11,16, 3, 8,18, 6,10,13)( 2,12,15, 4, 7,17, 5, 9,14)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,13,10, 6,18, 8, 3,16,11)( 2,14, 9, 5,17, 7, 4,15,12)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,16, 8, 6,13,11, 3,18,10)( 2,15, 7, 5,14,12, 4,17, 9)$ |
| $ 9, 9 $ | $64$ | $9$ | $( 1,18,11, 6,16,10, 3,13, 8)( 2,17,12, 5,15, 9, 4,14, 7)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)( 9,10)(17,18)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 7, 8)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 7, 8)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 6 $ | $64$ | $6$ | $( 1, 3, 6, 2, 4, 5)( 7, 9,12, 8,10,11)(13,16,18,14,15,17)$ |
| $ 6, 6, 6 $ | $64$ | $6$ | $( 1, 6, 4, 2, 5, 3)( 7,12,10, 8,11, 9)(13,18,15,14,17,16)$ |
| $ 18 $ | $64$ | $18$ | $( 1, 8,13, 3,10,16, 6,12,18, 2, 7,14, 4, 9,15, 5,11,17)$ |
| $ 18 $ | $64$ | $18$ | $( 1,10,18, 4,12,13, 6, 7,15, 2, 9,17, 3,11,14, 5, 8,16)$ |
| $ 18 $ | $64$ | $18$ | $( 1,11,15, 4, 7,17, 6, 9,14, 2,12,16, 3, 8,18, 5,10,13)$ |
| $ 18 $ | $64$ | $18$ | $( 1,13,10, 6,17, 8, 3,16,11, 2,14, 9, 5,18, 7, 4,15,12)$ |
| $ 18 $ | $64$ | $18$ | $( 1,16, 8, 6,14,12, 3,18, 9, 2,15, 7, 5,13,11, 4,17,10)$ |
| $ 18 $ | $64$ | $18$ | $( 1,18,12, 6,15, 9, 4,14, 7, 2,17,11, 5,16,10, 3,13, 8)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |