$( x^{9} + x^{4} + 1 )^{2} + \left(2 x^{7} + 2 x^{4} + 2 x^{3} + 2 x + 2\right) ( x^{9} + x^{4} + 1 ) + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | 2.9.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{9} + x^{4} + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{2} + \left(2 t^{7} + 2 t^{4} + 2 t^{3} + 2 t + 2\right) x + 6 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$4608$
|
| Galois group: |
$C_2\wr C_9$ (as 18T460)
|
| Inertia group: |
Intransitive group isomorphic to $C_2^9$
|
| Wild inertia group: |
$C_2^9$
|
| Galois unramified degree: |
$9$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 2, 2, 2, 2, 2, 2]$
|
| Galois Swan slopes: |
$[1,1,1,1,1,1,1,1,1]$
|
| Galois mean slope: |
$1.99609375$
|
| Galois splitting model: |
$x^{18} - 27 x^{16} + 153 x^{14} + 1323 x^{12} - 14418 x^{10} + 20169 x^{8} + 116640 x^{6} - 286497 x^{4} + 183708 x^{2} - 19683$
|