Properties

Label 18T460
Order \(4608\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $460$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,15,13,12,10,7,6,3,2,17,16,14,11,9,8,5,4), (1,18,16,14,11,9,7,5,3)(2,17,15,13,12,10,8,6,4)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
9:  $C_9$
12:  $A_4$
18:  $C_{18}$
24:  $A_4\times C_2$
36:  $C_2^2 : C_9$
72:  18T26
576:  12T166
1152:  18T264
2304:  18T368

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_9$

Low degree siblings

18T460 x 20

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4608=2^{9} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.