Properties

Label 2.5.4.40b192.64
Base \(\Q_{2}\)
Degree \(20\)
e \(4\)
f \(5\)
c \(40\)
Galois group $C_2^8:C_{10}$ (as 20T256)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + x^{2} + 1 )^{4} + \left(4 x^{3} + 4 x^{2} + 6 x + 4\right) ( x^{5} + x^{2} + 1 )^{3} + \left(2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 2\right) ( x^{5} + x^{2} + 1 )^{2} + \left(4 x^{4} + 4 x^{3} + 4 x^{2} + 4 x\right) ( x^{5} + x^{2} + 1 ) + 12 x^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $4$
Residue field degree $f$: $5$
Discriminant exponent $c$: $40$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3]$
Visible Swan slopes:$[1,2]$
Means:$\langle\frac{1}{2}, \frac{5}{4}\rangle$
Rams:$(1, 3)$
Jump set:$[1, 3, 7]$
Roots of unity:$62 = (2^{ 5 } - 1) \cdot 2$

Intermediate fields

2.5.1.0a1.1, 2.5.2.10a7.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.5.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(4 t + 4\right) x^{3} + \left(2 t^{3} + 2 t^{2} + 2 t + 2\right) x^{2} + \left(4 t^{3} + 4 t^{2} + 4 t\right) x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (t^3 + t^2 + t + 1)$,$(t^3 + t^2 + t + 1) z + (t^4 + t^3 + t^2)$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois degree: $2560$
Galois group: $C_2^8:C_{10}$ (as 20T256)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed