Show commands: Magma
Group invariants
| Abstract group: | $C_2^8:C_{10}$ |
| |
| Order: | $2560=2^{9} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $20$ |
| |
| Transitive number $t$: | $256$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8,12,16,17,2,7,11,15,18)(3,5,9,13,19)(4,6,10,14,20)$, $(1,10,17,7,16)(2,9,18,8,15)(3,11,19,5,14)(4,12,20,6,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $C_{10}$ $80$: $C_2^4 : C_5$ $160$: $C_2 \times (C_2^4 : C_5)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_2^4 : C_5$
Low degree siblings
20T256 x 23, 20T262 x 24, 32T205514 x 8, 40T1883 x 48, 40T1975 x 24, 40T2019 x 12, 40T2128 x 48, 40T2166 x 24, 40T2206 x 24, 40T2209 x 48, 40T2210 x 48, 40T2211 x 48, 40T2212 x 24, 40T2240 x 12, 40T2291 x 8, 40T2292 x 24, 40T2293 x 48, 40T2294 x 48, 40T2295 x 48, 40T2296 x 48, 40T2297 x 96, 40T2298 x 96, 40T2299 x 96, 40T2300 x 96, 40T2301 x 96, 40T2302 x 96, 40T2303 x 96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{4},1^{12}$ | $5$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2C | $2^{4},1^{12}$ | $5$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 2D | $2^{4},1^{12}$ | $10$ | $2$ | $4$ | $(13,15)(14,16)(17,19)(18,20)$ |
| 2E | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
| 2F | $2^{4},1^{12}$ | $10$ | $2$ | $4$ | $( 9,11)(10,12)(17,20)(18,19)$ |
| 2G | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 9,11)(10,12)(13,14)(15,16)(17,19)(18,20)$ |
| 2H | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)$ |
| 2I | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 5, 6)( 7, 8)(13,15)(14,16)(17,20)(18,19)$ |
| 2J | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,19)(18,20)$ |
| 2K | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(17,19)(18,20)$ |
| 2L | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,14)(15,16)(17,20)(18,19)$ |
| 2M | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,18)(19,20)$ |
| 2N | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 5, 7)( 6, 8)(13,16)(14,15)(17,18)(19,20)$ |
| 2O | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,10)(11,12)(13,14)(15,16)(17,19)(18,20)$ |
| 2P | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,10)(11,12)(13,15)(14,16)(17,18)(19,20)$ |
| 2Q | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)$ |
| 2R | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,19)(18,20)$ |
| 2S | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,12)(10,11)(13,14)(15,16)(17,18)(19,20)$ |
| 2T | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,19)(18,20)$ |
| 2U | $2^{8},1^{4}$ | $10$ | $2$ | $8$ | $( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)$ |
| 2V | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
| 2W | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,14)(15,16)(17,19)(18,20)$ |
| 2X | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)$ |
| 2Y | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)$ |
| 2Z | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)$ |
| 2AA | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)$ |
| 2AB | $2^{5},1^{10}$ | $16$ | $2$ | $5$ | $( 1, 2)( 5, 6)( 9,10)(13,14)(19,20)$ |
| 4A | $4^{4},2,1^{2}$ | $80$ | $4$ | $13$ | $( 1, 3, 2, 4)( 5, 6)( 9,11,10,12)(13,15,14,16)(17,19,18,20)$ |
| 4B | $4^{2},2^{3},1^{6}$ | $80$ | $4$ | $9$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)(11,12)(13,14)(17,18)$ |
| 4C | $4^{2},2^{3},1^{6}$ | $80$ | $4$ | $9$ | $( 1, 2)( 5, 7, 6, 8)(11,12)(13,16,14,15)(19,20)$ |
| 5A1 | $5^{4}$ | $256$ | $5$ | $16$ | $( 1,13, 6,20,10)( 2,14, 5,19, 9)( 3,15, 8,18,11)( 4,16, 7,17,12)$ |
| 5A-1 | $5^{4}$ | $256$ | $5$ | $16$ | $( 1,10,20, 6,13)( 2, 9,19, 5,14)( 3,11,18, 8,15)( 4,12,17, 7,16)$ |
| 5A2 | $5^{4}$ | $256$ | $5$ | $16$ | $( 1, 6,10,13,20)( 2, 5, 9,14,19)( 3, 8,11,15,18)( 4, 7,12,16,17)$ |
| 5A-2 | $5^{4}$ | $256$ | $5$ | $16$ | $( 1,20,13,10, 6)( 2,19,14, 9, 5)( 3,18,15,11, 8)( 4,17,16,12, 7)$ |
| 10A1 | $10,5^{2}$ | $256$ | $10$ | $17$ | $( 1,19,13, 9, 6, 2,20,14,10, 5)( 3,18,15,11, 8)( 4,17,16,12, 7)$ |
| 10A-1 | $10,5^{2}$ | $256$ | $10$ | $17$ | $( 1, 5,10,14,20, 2, 6, 9,13,19)( 3, 8,11,15,18)( 4, 7,12,16,17)$ |
| 10A3 | $10,5^{2}$ | $256$ | $10$ | $17$ | $( 1, 9,20, 5,13, 2,10,19, 6,14)( 3,11,18, 8,15)( 4,12,17, 7,16)$ |
| 10A-3 | $10,5^{2}$ | $256$ | $10$ | $17$ | $( 1,14, 6,19,10, 2,13, 5,20, 9)( 3,15, 8,18,11)( 4,16, 7,17,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
40 x 40 character table
Regular extensions
Data not computed