Properties

Label 2.5.2.10a2.1
Base \(\Q_{2}\)
Degree \(10\)
e \(2\)
f \(5\)
c \(10\)
Galois group $C_2^4 : C_5$ (as 10T8)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + x^{2} + 1 )^{2} + 2 x ( x^{5} + x^{2} + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $2$
Residue field degree $f$: $5$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 3]$
Roots of unity:$62 = (2^{ 5 } - 1) \cdot 2$

Intermediate fields

2.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.5.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{5} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(2 t^{4} + 2 t^{3} + 2 t + 2\right) x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^2 + 1)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $80$
Galois group: $C_2^4:C_5$ (as 10T8)
Inertia group: Intransitive group isomorphic to $C_2^4$
Wild inertia group: $C_2^4$
Galois unramified degree: $5$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2]$
Galois Swan slopes: $[1,1,1,1]$
Galois mean slope: $1.875$
Galois splitting model:$x^{10} - 4 x^{8} + 2 x^{6} + 5 x^{4} - 2 x^{2} - 1$