Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $C_2^4 : C_5$ | |
| CHM label : | $[2^{4}]5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 5: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $C_5$
Low degree siblings
10T8 x 2, 16T178, 20T17 x 6, 20T23, 40T57 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 4, 9)( 5,10)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 8)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 5, 5 $ | $16$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
| $ 5, 5 $ | $16$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)$ |
| $ 5, 5 $ | $16$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)$ |
| $ 5, 5 $ | $16$ | $5$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)$ |
Group invariants
| Order: | $80=2^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [80, 49] |
| Character table: |
2 4 4 4 4 . . . .
5 1 . . . 1 1 1 1
1a 2a 2b 2c 5a 5b 5c 5d
2P 1a 1a 1a 1a 5b 5d 5a 5c
3P 1a 2a 2b 2c 5c 5a 5d 5b
5P 1a 2a 2b 2c 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 A B /B /A
X.3 1 1 1 1 B /A A /B
X.4 1 1 1 1 /B A /A B
X.5 1 1 1 1 /A /B B A
X.6 5 -3 1 1 . . . .
X.7 5 1 -3 1 . . . .
X.8 5 1 1 -3 . . . .
A = E(5)^4
B = E(5)^3
|