Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(6\)
Galois group $D_{4}$ (as 4T3)

Related objects


Learn more

Defining polynomial

\(x^{4} + 2 x^{3} + 2\) Copy content Toggle raw display


Base field: $\Q_{2}$
Degree $d$: $4$
Ramification exponent $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 2]$

Intermediate fields


Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 1$
Associated inertia:$2$
Indices of inseparability:$[3, 3, 0]$

Invariants of the Galois closure

Galois group:$D_4$ (as 4T3)
Inertia group:$C_2^2$ (as 4T2)
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 2]$
Galois mean slope:$3/2$
Galois splitting model: $x^{4} + 2 x^{3} + 2$ Copy content Toggle raw display