$( x^{4} + x + 1 )^{4} + \left(8 x^{2} + 8 x + 4\right) ( x^{4} + x + 1 )^{3} + 4 x ( x^{4} + x + 1 )^{2} + 8 ( x^{4} + x + 1 ) + 8 x^{3} + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | 2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{4} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 8 t x^{3} + 4 t x^{2} + \left(8 t^{2} + 8\right) x + 8 t^{3} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$256$
|
Galois group: |
$(C_4\times C_8).C_2^3$ (as 16T577)
|
Inertia group: |
Intransitive group isomorphic to $C_4^2:C_2^2$
|
Wild inertia group: |
$C_4^2:C_2^2$
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, 3, 4]$
|
Galois Swan slopes: |
$[1,1,1,2,2,3]$
|
Galois mean slope: |
$3.34375$
|
Galois splitting model: |
$x^{16} - 20 x^{12} + 200 x^{8} - 1000 x^{4} + 2000$
|