$( x^{4} + x + 1 )^{4} + \left(8 x^{3} + 4 x^{2} + 4\right) ( x^{4} + x + 1 )^{3} + \left(4 x^{3} + 4 x^{2} + 4 x\right) ( x^{4} + x + 1 )^{2} + \left(8 x^{3} + 8\right) ( x^{4} + x + 1 ) + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | 2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{4} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + \left(8 t + 8\right) x^{3} + \left(4 t^{3} + 4\right) x^{2} + \left(8 t^{3} + 8 t^{2} + 8 t\right) x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$1024$
|
Galois group: |
$C_2^4.C_2\wr C_4$ (as 16T1269)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},3]$
|
Galois mean slope: |
$3.6328125$
|
Galois splitting model: | not computed |