Properties

Label 2.4.4.36a3.110
Base \(\Q_{2}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(36\)
Galois group $C_2^5:C_4$ (as 16T227)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{4} + x + 1 )^{3} + \left(2 x^{2} + 10 x\right) ( x^{4} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{7}{2}]$
Visible Swan slopes:$[1,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{2}\rangle$
Rams:$(1, 4)$
Jump set:$[1, 3, 7]$
Roots of unity:$30 = (2^{ 4 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.4.1.0a1.1, 2.2.2.4a2.2, 2.2.2.4a2.1, 2.4.2.8a3.1, 2.2.4.18a2.5, 2.2.4.18a2.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 t^{2} x^{3} + \left(2 t^{2} + 2 t\right) x^{2} + \left(8 t^{2} + 8\right) x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (t^2 + t)$,$(t^2 + t) z + (t^2 + t)$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 2, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^5:C_4$ (as 16T227)
Inertia group: Intransitive group isomorphic to $C_2^2\wr C_2$
Wild inertia group: $C_2^2\wr C_2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model: $x^{16} - 10 x^{14} + 60 x^{12} - 240 x^{10} + 640 x^{8} - 1200 x^{6} + 1400 x^{4} - 800 x^{2} + 400$ Copy content Toggle raw display