Properties

Label 2.3.7.18a1.1
Base \(\Q_{2}\)
Degree \(21\)
e \(7\)
f \(3\)
c \(18\)
Galois group $C_7:C_{21}$ (as 21T13)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 1 )^{7} + 2 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $21$
Ramification index $e$: $7$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_7$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[7]$
Roots of unity:$14 = (2^{ 3 } - 1) \cdot 2$

Intermediate fields

2.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + 2 t \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + z^5 + z^4 + z^3 + z^2 + z + 1$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $147$
Galois group: $C_7:C_{21}$ (as 21T13)
Inertia group: Intransitive group isomorphic to $C_7$
Wild inertia group: $C_1$
Galois unramified degree: $21$
Galois tame degree: $7$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8571428571428571$
Galois splitting model:not computed