Defining polynomial
$( x^{3} + x + 1 )^{7} + 2 x$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $21$ |
Ramification index $e$: | $7$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $18$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_7$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | $[7]$ |
Roots of unity: | $14 = (2^{ 3 } - 1) \cdot 2$ |
Intermediate fields
2.3.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{7} + 2 t \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $147$ |
Galois group: | $C_7:C_{21}$ (as 21T13) |
Inertia group: | Intransitive group isomorphic to $C_7$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $21$ |
Galois tame degree: | $7$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.8571428571428571$ |
Galois splitting model: | not computed |