Defining polynomial
|
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 26$
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $12$ |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $3$ |
| Discriminant exponent $c$: | $33$ |
| Discriminant root field: | $\Q_{2}(\sqrt{2\cdot 5})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: | $C_{12}$ |
| This field is Galois and abelian over $\Q_{2}.$ | |
| Visible Artin slopes: | $[3, 4]$ |
| Visible Swan slopes: | $[2,3]$ |
| Means: | $\langle1, 2\rangle$ |
| Rams: | $(2, 4)$ |
| Jump set: | $[1, 3, 7]$ |
| Roots of unity: | $14 = (2^{ 3 } - 1) \cdot 2$ |
Intermediate fields
| $\Q_{2}(\sqrt{2\cdot 5})$, 2.3.1.0a1.1, 2.1.4.11a1.18, 2.3.2.9a1.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{4} + 8 x^{3} + 4 x^{2} + 26 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^2 + (t + 1)$,$(t + 1) z + (t^2 + 1)$ |
| Associated inertia: | $1$,$1$ |
| Indices of inseparability: | $[8, 4, 0]$ |
Invariants of the Galois closure
| Galois degree: | $12$ |
| Galois group: | $C_{12}$ (as 12T1) |
| Inertia group: | Intransitive group isomorphic to $C_4$ |
| Wild inertia group: | $C_4$ |
| Galois unramified degree: | $3$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[3, 4]$ |
| Galois Swan slopes: | $[2,3]$ |
| Galois mean slope: | $2.75$ |
| Galois splitting model: | $x^{12} - 4 x^{11} - 62 x^{10} + 224 x^{9} + 1439 x^{8} - 4452 x^{7} - 15958 x^{6} + 38484 x^{5} + 88410 x^{4} - 140364 x^{3} - 227080 x^{2} + 165912 x + 187921$ |