Properties

Label 2.3.4.33a1.196
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(33\)
Galois group $D_4\times A_4$ (as 12T51)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 18$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $33$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4]$
Visible Swan slopes:$[2,3]$
Means:$\langle1, 2\rangle$
Rams:$(2, 4)$
Jump set:$[1, 3, 7]$
Roots of unity:$14 = (2^{ 3 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.3.1.0a1.1, 2.3.2.9a1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(8 t^{2} + 8 t\right) x^{3} + 4 x^{2} + 8 x + 18 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (t + 1)$,$(t + 1) z + (t^2 + 1)$
Associated inertia:$1$,$1$
Indices of inseparability:$[8, 4, 0]$

Invariants of the Galois closure

Galois degree: $96$
Galois group: $D_4\times A_4$ (as 12T51)
Inertia group: Intransitive group isomorphic to $C_2^2\times D_4$
Wild inertia group: $C_2^2\times D_4$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 3, 4]$
Galois Swan slopes: $[1,1,1,2,3]$
Galois mean slope: $3.1875$
Galois splitting model:$x^{12} - 10 x^{8} + 24 x^{4} - 8$