Properties

Label 12T51
Order \(96\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_4\times A_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $51$
Group :  $D_4\times A_4$
CHM label :  $[1/16.D(4)^{3}]3$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,9)(6,12), (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,7)(3,9)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Degree 4: None

Degree 6: $C_6$

Low degree siblings

12T51, 16T179 x 2, 24T160, 24T161 x 2, 24T162 x 2, 24T163 x 2, 24T164 x 2, 32T385

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 4,10)( 5,11)( 6,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $3$ $2$ $( 3, 9)( 6,12)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 2, 8)( 4,10)( 6,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $3$ $2$ $( 2, 8)( 3, 9)( 5,11)( 6,12)$
$ 12 $ $8$ $12$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$
$ 6, 6 $ $8$ $6$ $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$
$ 6, 6 $ $4$ $6$ $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$
$ 6, 3, 3 $ $8$ $6$ $( 1, 3, 5)( 2, 4,12, 8,10, 6)( 7, 9,11)$
$ 3, 3, 3, 3 $ $4$ $3$ $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$
$ 2, 2, 2, 2, 2, 2 $ $6$ $2$ $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$
$ 4, 4, 4 $ $2$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$
$ 4, 4, 4 $ $6$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$
$ 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
$ 6, 3, 3 $ $8$ $6$ $( 1, 5, 3)( 2, 6,10, 8,12, 4)( 7,11, 9)$
$ 6, 6 $ $4$ $6$ $( 1, 5, 9, 7,11, 3)( 2, 6, 4, 8,12,10)$
$ 3, 3, 3, 3 $ $4$ $3$ $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$
$ 6, 6 $ $8$ $6$ $( 1, 6,11, 4, 3, 2)( 5,10, 9, 8, 7,12)$
$ 12 $ $8$ $12$ $( 1, 6, 5, 4, 9, 8, 7,12,11,10, 3, 2)$
$ 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$

Group invariants

Order:  $96=2^{5} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [96, 197]
Character table:   
      2  5  4  5  4  5   2   2   3   2   3  4  4  4  4   2   3   3   2   2  5
      3  1  .  .  1  .   1   1   1   1   1  .  1  .  1   1   1   1   1   1  1

        1a 2a 2b 2c 2d 12a  6a  6b  6c  3a 2e 4a 4b 2f  6d  6e  3b  6f 12b 2g
     2P 1a 1a 1a 1a 1a  6b  3a  3b  3b  3b 1a 2g 2g 1a  3a  3a  3a  3b  6e 1a
     3P 1a 2a 2b 2c 2d  4a  2f  2g  2c  1a 2e 4a 4b 2f  2c  2g  1a  2f  4a 2g
     5P 1a 2a 2b 2c 2d 12b  6f  6e  6d  3b 2e 4a 4b 2f  6c  6b  3a  6a 12a 2g
     7P 1a 2a 2b 2c 2d 12a  6a  6b  6c  3a 2e 4a 4b 2f  6d  6e  3b  6f 12b 2g
    11P 1a 2a 2b 2c 2d 12b  6f  6e  6d  3b 2e 4a 4b 2f  6c  6b  3a  6a 12a 2g

X.1      1  1  1  1  1   1   1   1   1   1  1  1  1  1   1   1   1   1   1  1
X.2      1 -1  1 -1  1  -1   1   1  -1   1  1 -1 -1  1  -1   1   1   1  -1  1
X.3      1 -1  1 -1  1   1  -1   1  -1   1 -1  1  1 -1  -1   1   1  -1   1  1
X.4      1  1  1  1  1  -1  -1   1   1   1 -1 -1 -1 -1   1   1   1  -1  -1  1
X.5      1 -1  1 -1  1   A  -A -/A  /A -/A  1 -1 -1  1   A  -A  -A -/A  /A  1
X.6      1 -1  1 -1  1  /A -/A  -A   A  -A  1 -1 -1  1  /A -/A -/A  -A   A  1
X.7      1 -1  1 -1  1 -/A  /A  -A   A  -A -1  1  1 -1  /A -/A -/A   A  -A  1
X.8      1 -1  1 -1  1  -A   A -/A  /A -/A -1  1  1 -1   A  -A  -A  /A -/A  1
X.9      1  1  1  1  1   A   A -/A -/A -/A -1 -1 -1 -1  -A  -A  -A  /A  /A  1
X.10     1  1  1  1  1  /A  /A  -A  -A  -A -1 -1 -1 -1 -/A -/A -/A   A   A  1
X.11     1  1  1  1  1 -/A -/A  -A  -A  -A  1  1  1  1 -/A -/A -/A  -A  -A  1
X.12     1  1  1  1  1  -A  -A -/A -/A -/A  1  1  1  1  -A  -A  -A -/A -/A  1
X.13     2  . -2  .  2   .   .  -2   .   2  .  .  .  .   .  -2   2   .   . -2
X.14     2  . -2  .  2   .   .   B   .  -B  .  .  .  .   .  /B -/B   .   . -2
X.15     2  . -2  .  2   .   .  /B   . -/B  .  .  .  .   .   B  -B   .   . -2
X.16     3 -1 -1  3 -1   .   .   .   .   . -1  3 -1  3   .   .   .   .   .  3
X.17     3 -1 -1  3 -1   .   .   .   .   .  1 -3  1 -3   .   .   .   .   .  3
X.18     3  1 -1 -3 -1   .   .   .   .   . -1 -3  1  3   .   .   .   .   .  3
X.19     3  1 -1 -3 -1   .   .   .   .   .  1  3 -1 -3   .   .   .   .   .  3
X.20     6  .  2  . -2   .   .   .   .   .  .  .  .  .   .   .   .   .   . -6

A = -E(3)
  = (1-Sqrt(-3))/2 = -b3
B = -2*E(3)^2
  = 1+Sqrt(-3) = 1+i3