Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $51$ | |
| Group : | $D_4\times A_4$ | |
| CHM label : | $[1/16.D(4)^{3}]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,9)(6,12), (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,7)(3,9)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 8: $D_{4}$ 12: $A_4$, $C_6\times C_2$ 24: $A_4\times C_2$ x 3, $D_4 \times C_3$ 48: $C_2^2 \times A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$
Low degree siblings
12T51, 16T179 x 2, 24T160, 24T161 x 2, 24T162 x 2, 24T163 x 2, 24T164 x 2, 32T385Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 4,10)( 5,11)( 6,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 8)( 4,10)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 2, 3, 4,11, 6)( 5,12, 7, 8, 9,10)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 6, 3, 3 $ | $8$ | $6$ | $( 1, 3, 5)( 2, 4,12, 8,10, 6)( 7, 9,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 6, 3, 3 $ | $8$ | $6$ | $( 1, 5, 3)( 2, 6,10, 8,12, 4)( 7,11, 9)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 5, 9, 7,11, 3)( 2, 6, 4, 8,12,10)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 6,11, 4, 3, 2)( 5,10, 9, 8, 7,12)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 6, 5, 4, 9, 8, 7,12,11,10, 3, 2)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 197] |
| Character table: |
2 5 4 5 4 5 2 2 3 2 3 4 4 4 4 2 3 3 2 2 5
3 1 . . 1 . 1 1 1 1 1 . 1 . 1 1 1 1 1 1 1
1a 2a 2b 2c 2d 12a 6a 6b 6c 3a 2e 4a 4b 2f 6d 6e 3b 6f 12b 2g
2P 1a 1a 1a 1a 1a 6b 3a 3b 3b 3b 1a 2g 2g 1a 3a 3a 3a 3b 6e 1a
3P 1a 2a 2b 2c 2d 4a 2f 2g 2c 1a 2e 4a 4b 2f 2c 2g 1a 2f 4a 2g
5P 1a 2a 2b 2c 2d 12b 6f 6e 6d 3b 2e 4a 4b 2f 6c 6b 3a 6a 12a 2g
7P 1a 2a 2b 2c 2d 12a 6a 6b 6c 3a 2e 4a 4b 2f 6d 6e 3b 6f 12b 2g
11P 1a 2a 2b 2c 2d 12b 6f 6e 6d 3b 2e 4a 4b 2f 6c 6b 3a 6a 12a 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 -1 1 -1 1 1 1 -1 1
X.3 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 1
X.4 1 1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1
X.5 1 -1 1 -1 1 A -A -/A /A -/A 1 -1 -1 1 A -A -A -/A /A 1
X.6 1 -1 1 -1 1 /A -/A -A A -A 1 -1 -1 1 /A -/A -/A -A A 1
X.7 1 -1 1 -1 1 -/A /A -A A -A -1 1 1 -1 /A -/A -/A A -A 1
X.8 1 -1 1 -1 1 -A A -/A /A -/A -1 1 1 -1 A -A -A /A -/A 1
X.9 1 1 1 1 1 A A -/A -/A -/A -1 -1 -1 -1 -A -A -A /A /A 1
X.10 1 1 1 1 1 /A /A -A -A -A -1 -1 -1 -1 -/A -/A -/A A A 1
X.11 1 1 1 1 1 -/A -/A -A -A -A 1 1 1 1 -/A -/A -/A -A -A 1
X.12 1 1 1 1 1 -A -A -/A -/A -/A 1 1 1 1 -A -A -A -/A -/A 1
X.13 2 . -2 . 2 . . -2 . 2 . . . . . -2 2 . . -2
X.14 2 . -2 . 2 . . B . -B . . . . . /B -/B . . -2
X.15 2 . -2 . 2 . . /B . -/B . . . . . B -B . . -2
X.16 3 -1 -1 3 -1 . . . . . -1 3 -1 3 . . . . . 3
X.17 3 -1 -1 3 -1 . . . . . 1 -3 1 -3 . . . . . 3
X.18 3 1 -1 -3 -1 . . . . . -1 -3 1 3 . . . . . 3
X.19 3 1 -1 -3 -1 . . . . . 1 3 -1 -3 . . . . . 3
X.20 6 . 2 . -2 . . . . . . . . . . . . . . -6
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = -2*E(3)^2
= 1+Sqrt(-3) = 1+i3
|