Defining polynomial
|
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{3} + 2 ( x^{3} + x + 1 )^{2} + 4 ( x^{3} + x + 1 ) + 6$
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $12$ |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $3$ |
| Discriminant exponent $c$: | $24$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$ $=$ $\Gal(K/\Q_{2})$: | $C_2\times C_6$ |
| This field is Galois and abelian over $\Q_{2}.$ | |
| Visible Artin slopes: | $[2, 3]$ |
| Visible Swan slopes: | $[1,2]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
| Rams: | $(1, 3)$ |
| Jump set: | $[1, 2, 8]$ |
| Roots of unity: | $14 = (2^{ 3 } - 1) \cdot 2$ |
Intermediate fields
| $\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2})$, 2.3.1.0a1.1, 2.1.4.8b1.5, 2.3.2.6a1.2, 2.3.2.9a1.6, 2.3.2.9a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 6 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^2 + (t^2 + t + 1)$,$(t^2 + t + 1) z + t^2$ |
| Associated inertia: | $1$,$1$ |
| Indices of inseparability: | $[5, 2, 0]$ |
Invariants of the Galois closure
| Galois degree: | $12$ |
| Galois group: | $C_2\times C_6$ (as 12T2) |
| Inertia group: | Intransitive group isomorphic to $C_2^2$ |
| Wild inertia group: | $C_2^2$ |
| Galois unramified degree: | $3$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 3]$ |
| Galois Swan slopes: | $[1,2]$ |
| Galois mean slope: | $2.0$ |
| Galois splitting model: | $x^{12} + 12 x^{10} + 54 x^{8} + 112 x^{6} + 105 x^{4} + 36 x^{2} + 1$ |