$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_8$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, \frac{7}{2}, \frac{9}{2}]$ |
Visible Swan slopes: | $[1,\frac{5}{2},\frac{7}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\rangle$ |
Rams: | $(1, 4, 8)$ |
Jump set: | $[1, 5, 13, 21]$ |
Roots of unity: | $12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{6} + 8 x^{5} + \left(8 t + 2\right) x^{4} + \left(16 t + 16\right) x^{3} + 16 x + 2 \)
$\ \in\Q_{2}(t)[x]$
|