Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $114$ | |
| Group : | $(C_4\times C_8):C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,16)(2,15)(3,9)(4,10)(5,12)(6,11)(7,14)(8,13), (1,14)(2,13)(3,16)(4,15)(5,9)(6,10)(7,11)(8,12), (1,10,6,13,2,9,5,14)(3,11,7,15,4,12,8,16) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 2, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$, $Q_8:C_2$, $C_4\times C_2^2$ 32: $C_4 \times D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Low degree siblings
16T114, 32T119, 32T248 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $4$ | $( 9,14,10,13)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $2$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,13,16,10,12,14,15)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,13,15,10,11,14,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,15,14,12,10,16,13,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,16,14,11,10,15,13,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,11,13,16,10,12,14,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,15,14,12,10,16,13,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,16,14,11,10,15,13,12)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,15,14,12,10,16,13,11)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,16,14,11,10,15,13,12)$ |
| $ 8, 8 $ | $1$ | $8$ | $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,15,14,12,10,16,13,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 5,13, 2,10, 6,14)( 3,12, 8,15, 4,11, 7,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 6,14, 2,10, 5,13)( 3,12, 7,16, 4,11, 8,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,11, 6,15, 2,12, 5,16)( 3,14, 7,10, 4,13, 8, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1,11, 5,16, 2,12, 6,15)( 3,14, 8, 9, 4,13, 7,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,10, 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,10)( 8, 9)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 124] |
| Character table: Data not available. |